使用稀疏数据估计原发性甲状腺功能减退症的受试者特异性剂量。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Devleena Ghosh, Chittaranjan Mandal
{"title":"使用稀疏数据估计原发性甲状腺功能减退症的受试者特异性剂量。","authors":"Devleena Ghosh, Chittaranjan Mandal","doi":"10.1089/cmb.2024.0752","DOIUrl":null,"url":null,"abstract":"<p><p>Subject-specific dosage estimation for primary hypothyroidism using subject-specific parameters of the thyrotropic regulation system is presented in this work. The data needed for such personalized modeling are usually sparse. This is addressed by utilizing available data along with domain knowledge for estimation of model parameters but with some uncertainty. Optimization-based dosage estimation approaches may not be applicable in the presence of such uncertainty. In this work, the optimal drug dosage range based on estimated parameter ranges for primary hypothyroid condition is estimated using the mathematical model through satisfiability modulo theory (SMT)-based analysis. The salient features of this work are as follows: (1) estimation of subject-specific model parameters with uncertainty using subject-specific pre-treatment and post-treatment observations, (2) modeling periodic drug administration as part of the ordinary differential equation model of thyrotropic regulation pathway through Fourier series approximation, (3) application of SMT-based analysis for determining optimal dosage range using this model and estimated parameter ranges, and (4) an initial dosage estimation method using the regression model. Results have been obtained to support the working of the developed computational procedures.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subject-Specific Dosage Estimation for Primary Hypothyroidism Using Sparse Data.\",\"authors\":\"Devleena Ghosh, Chittaranjan Mandal\",\"doi\":\"10.1089/cmb.2024.0752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subject-specific dosage estimation for primary hypothyroidism using subject-specific parameters of the thyrotropic regulation system is presented in this work. The data needed for such personalized modeling are usually sparse. This is addressed by utilizing available data along with domain knowledge for estimation of model parameters but with some uncertainty. Optimization-based dosage estimation approaches may not be applicable in the presence of such uncertainty. In this work, the optimal drug dosage range based on estimated parameter ranges for primary hypothyroid condition is estimated using the mathematical model through satisfiability modulo theory (SMT)-based analysis. The salient features of this work are as follows: (1) estimation of subject-specific model parameters with uncertainty using subject-specific pre-treatment and post-treatment observations, (2) modeling periodic drug administration as part of the ordinary differential equation model of thyrotropic regulation pathway through Fourier series approximation, (3) application of SMT-based analysis for determining optimal dosage range using this model and estimated parameter ranges, and (4) an initial dosage estimation method using the regression model. Results have been obtained to support the working of the developed computational procedures.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0752\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0752","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

使用促甲状腺调节系统的个体特异性参数对原发性甲状腺功能减退症进行个体特异性剂量估计。这种个性化建模所需的数据通常是稀疏的。这是通过利用可用数据和领域知识来估计模型参数来解决的,但存在一些不确定性。在存在这种不确定性的情况下,基于优化的剂量估计方法可能不适用。本文通过基于可满足模理论(SMT)的分析,利用数学模型估计出原发性甲状腺功能减退的最优用药剂量范围。本工作的突出特点如下:(1)利用受试者特异性治疗前和治疗后的观察,估计具有不确定性的受试者特异性模型参数;(2)通过傅立叶级数近似,将周期给药作为促甲状腺调节途径的常微分方程模型的一部分建模;(3)应用基于smt的分析,利用该模型和估计的参数范围确定最佳剂量范围。(4)基于回归模型的初始剂量估算方法。所得到的结果支持所开发的计算程序的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subject-Specific Dosage Estimation for Primary Hypothyroidism Using Sparse Data.

Subject-specific dosage estimation for primary hypothyroidism using subject-specific parameters of the thyrotropic regulation system is presented in this work. The data needed for such personalized modeling are usually sparse. This is addressed by utilizing available data along with domain knowledge for estimation of model parameters but with some uncertainty. Optimization-based dosage estimation approaches may not be applicable in the presence of such uncertainty. In this work, the optimal drug dosage range based on estimated parameter ranges for primary hypothyroid condition is estimated using the mathematical model through satisfiability modulo theory (SMT)-based analysis. The salient features of this work are as follows: (1) estimation of subject-specific model parameters with uncertainty using subject-specific pre-treatment and post-treatment observations, (2) modeling periodic drug administration as part of the ordinary differential equation model of thyrotropic regulation pathway through Fourier series approximation, (3) application of SMT-based analysis for determining optimal dosage range using this model and estimated parameter ranges, and (4) an initial dosage estimation method using the regression model. Results have been obtained to support the working of the developed computational procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信