{"title":"基于多因素随机置换伪算法的优化对偶生成双曲图对抗网络安全工业医疗数据传输","authors":"R. Mahesh Muthulakshmi, T. P Anithaashri","doi":"10.1002/ett.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The industrial healthcare system suffers from severe security threats while sharing sensitive medical information. Inefficiency in processing data and misclassification of data are some of the problems faced by the system. This paper introduces a new framework, Deep Greylag-GHGAN, to address these problems. The proposed framework consists of a Dual Generative Hyperbolic Attention Graph Adversarial Network (DG-HGAN) with a Multi-Factor Random Permutation Pseudo Algorithm-based encryption system to monitor the health and ensure secure and efficient data transfer. The healthcare data undergo authentication based on a Multi-Factor Role-Based Access Control (MFRBAC). Then encryption with Improved Secure Encryption with Energy Optimization using Random Permutation Pseudo Algorithm (ISEEO-RPPA) is implemented to secure the data transfer. To clean it, pre-processing by Grid Constrained Data Cleansing Methods improves the data quality concerning noise reduction and normalization data besides redundancy removals. Classification is conducted with optimized DG-HGAN through an application of Greylag Goose Optimization (GGO) to achieve high-accuracy results with efficiency in execution. Experimental results show that there is a 93% improvement in security and a 99.9% accuracy in data classification compared to the existing methodologies. This comprehensive approach ensures the secure handling of sensitive medical data while maintaining processing efficiency and accuracy, making it a promising solution for real-world industrial healthcare applications.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Dual Generative Hyperbolic Graph Adversarial Network With Multi-Factor Random Permutation Pseudo Algorithm Based Encryption for Secured Industrial Healthcare Data Transferring\",\"authors\":\"R. Mahesh Muthulakshmi, T. P Anithaashri\",\"doi\":\"10.1002/ett.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The industrial healthcare system suffers from severe security threats while sharing sensitive medical information. Inefficiency in processing data and misclassification of data are some of the problems faced by the system. This paper introduces a new framework, Deep Greylag-GHGAN, to address these problems. The proposed framework consists of a Dual Generative Hyperbolic Attention Graph Adversarial Network (DG-HGAN) with a Multi-Factor Random Permutation Pseudo Algorithm-based encryption system to monitor the health and ensure secure and efficient data transfer. The healthcare data undergo authentication based on a Multi-Factor Role-Based Access Control (MFRBAC). Then encryption with Improved Secure Encryption with Energy Optimization using Random Permutation Pseudo Algorithm (ISEEO-RPPA) is implemented to secure the data transfer. To clean it, pre-processing by Grid Constrained Data Cleansing Methods improves the data quality concerning noise reduction and normalization data besides redundancy removals. Classification is conducted with optimized DG-HGAN through an application of Greylag Goose Optimization (GGO) to achieve high-accuracy results with efficiency in execution. Experimental results show that there is a 93% improvement in security and a 99.9% accuracy in data classification compared to the existing methodologies. This comprehensive approach ensures the secure handling of sensitive medical data while maintaining processing efficiency and accuracy, making it a promising solution for real-world industrial healthcare applications.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70056\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70056","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
An Optimized Dual Generative Hyperbolic Graph Adversarial Network With Multi-Factor Random Permutation Pseudo Algorithm Based Encryption for Secured Industrial Healthcare Data Transferring
The industrial healthcare system suffers from severe security threats while sharing sensitive medical information. Inefficiency in processing data and misclassification of data are some of the problems faced by the system. This paper introduces a new framework, Deep Greylag-GHGAN, to address these problems. The proposed framework consists of a Dual Generative Hyperbolic Attention Graph Adversarial Network (DG-HGAN) with a Multi-Factor Random Permutation Pseudo Algorithm-based encryption system to monitor the health and ensure secure and efficient data transfer. The healthcare data undergo authentication based on a Multi-Factor Role-Based Access Control (MFRBAC). Then encryption with Improved Secure Encryption with Energy Optimization using Random Permutation Pseudo Algorithm (ISEEO-RPPA) is implemented to secure the data transfer. To clean it, pre-processing by Grid Constrained Data Cleansing Methods improves the data quality concerning noise reduction and normalization data besides redundancy removals. Classification is conducted with optimized DG-HGAN through an application of Greylag Goose Optimization (GGO) to achieve high-accuracy results with efficiency in execution. Experimental results show that there is a 93% improvement in security and a 99.9% accuracy in data classification compared to the existing methodologies. This comprehensive approach ensures the secure handling of sensitive medical data while maintaining processing efficiency and accuracy, making it a promising solution for real-world industrial healthcare applications.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications