用于同频同时全双工数字域干扰抑制的长短期记忆网络

IF 1.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuting Zhang, Chao Ma, Xiaoyan Gao, Yuhan Huang
{"title":"用于同频同时全双工数字域干扰抑制的长短期记忆网络","authors":"Yuting Zhang,&nbsp;Chao Ma,&nbsp;Xiaoyan Gao,&nbsp;Yuhan Huang","doi":"10.1049/smt2.70004","DOIUrl":null,"url":null,"abstract":"<p>The co-frequency co-time full duplex (CCFD) system transmits and receives signals at the same frequency simultaneously, which can effectively improve the communication spectrum utilization of satellite and solve the problem of satellite frequency resource constraint. However, due to a large number of devices in a relatively small space, there is strong self-interference between transmitting and receiving antennas. Besides, the received signal intensity is not stable due to other factors such as multipath effect, electromagnetic interference, and so on. To solve this problem, this paper proposes a machine learning method for self-interference suppression of CCFD systems in digital domain. A signal sequence decomposition method based on the number of poles is used to solve the problem of insufficient suppression of nonlinear interference signal caused by signal strength instability. By using Hilbert transform, the input signal dimension of machine learning is reduced, which is to solve the high computational complexity. The short-term and long-term neural network architecture is adopted to predict and reconstruct the interference, and Bayesian optimization method is used to optimize the hyperparameters of the network, and introduces the acquisition function into the loss function, to improve the comprehensive training optimization of machine learning networks. The experimental results show that the proposed algorithm can effectively analyze and suppress the interference signal, and the interference suppression capability is improved by 10.7 dB compared with the traditional Long Short-Term Memory algorithm and 21.1 dB compared with the Least Mean Square algorithm. The algorithm presented in this paper is significant for the application of CCFD system on satellite.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70004","citationCount":"0","resultStr":"{\"title\":\"Long Short-Term Memory Network for Co-Frequency Co-Time Full-Duplex Digital Domain Interference Suppression\",\"authors\":\"Yuting Zhang,&nbsp;Chao Ma,&nbsp;Xiaoyan Gao,&nbsp;Yuhan Huang\",\"doi\":\"10.1049/smt2.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The co-frequency co-time full duplex (CCFD) system transmits and receives signals at the same frequency simultaneously, which can effectively improve the communication spectrum utilization of satellite and solve the problem of satellite frequency resource constraint. However, due to a large number of devices in a relatively small space, there is strong self-interference between transmitting and receiving antennas. Besides, the received signal intensity is not stable due to other factors such as multipath effect, electromagnetic interference, and so on. To solve this problem, this paper proposes a machine learning method for self-interference suppression of CCFD systems in digital domain. A signal sequence decomposition method based on the number of poles is used to solve the problem of insufficient suppression of nonlinear interference signal caused by signal strength instability. By using Hilbert transform, the input signal dimension of machine learning is reduced, which is to solve the high computational complexity. The short-term and long-term neural network architecture is adopted to predict and reconstruct the interference, and Bayesian optimization method is used to optimize the hyperparameters of the network, and introduces the acquisition function into the loss function, to improve the comprehensive training optimization of machine learning networks. The experimental results show that the proposed algorithm can effectively analyze and suppress the interference signal, and the interference suppression capability is improved by 10.7 dB compared with the traditional Long Short-Term Memory algorithm and 21.1 dB compared with the Least Mean Square algorithm. The algorithm presented in this paper is significant for the application of CCFD system on satellite.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.70004\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.70004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

采用同频同时全双工(CCFD)系统同时收发同频信号,可有效提高卫星通信频谱利用率,解决卫星频率资源约束问题。但由于设备数量较多,空间相对较小,发射天线和接收天线之间存在较强的自干扰。此外,由于多径效应、电磁干扰等因素,接收到的信号强度也不稳定。为了解决这一问题,本文提出了一种用于数字域CCFD系统自干扰抑制的机器学习方法。采用基于极点数的信号序列分解方法,解决了信号强度不稳定对非线性干扰信号抑制不足的问题。通过希尔伯特变换,降低了机器学习输入信号的维数,解决了机器学习的高计算复杂度问题。采用短期和长期神经网络架构对干扰进行预测和重构,采用贝叶斯优化方法对网络的超参数进行优化,并在损失函数中引入获取函数,提高机器学习网络的综合训练优化能力。实验结果表明,该算法能够有效地分析和抑制干扰信号,干扰抑制能力比传统长短期记忆算法提高了10.7 dB,比最小均方算法提高了21.1 dB。本文提出的算法对CCFD系统在卫星上的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long Short-Term Memory Network for Co-Frequency Co-Time Full-Duplex Digital Domain Interference Suppression

Long Short-Term Memory Network for Co-Frequency Co-Time Full-Duplex Digital Domain Interference Suppression

The co-frequency co-time full duplex (CCFD) system transmits and receives signals at the same frequency simultaneously, which can effectively improve the communication spectrum utilization of satellite and solve the problem of satellite frequency resource constraint. However, due to a large number of devices in a relatively small space, there is strong self-interference between transmitting and receiving antennas. Besides, the received signal intensity is not stable due to other factors such as multipath effect, electromagnetic interference, and so on. To solve this problem, this paper proposes a machine learning method for self-interference suppression of CCFD systems in digital domain. A signal sequence decomposition method based on the number of poles is used to solve the problem of insufficient suppression of nonlinear interference signal caused by signal strength instability. By using Hilbert transform, the input signal dimension of machine learning is reduced, which is to solve the high computational complexity. The short-term and long-term neural network architecture is adopted to predict and reconstruct the interference, and Bayesian optimization method is used to optimize the hyperparameters of the network, and introduces the acquisition function into the loss function, to improve the comprehensive training optimization of machine learning networks. The experimental results show that the proposed algorithm can effectively analyze and suppress the interference signal, and the interference suppression capability is improved by 10.7 dB compared with the traditional Long Short-Term Memory algorithm and 21.1 dB compared with the Least Mean Square algorithm. The algorithm presented in this paper is significant for the application of CCFD system on satellite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Science Measurement & Technology
Iet Science Measurement & Technology 工程技术-工程:电子与电气
CiteScore
4.30
自引率
7.10%
发文量
41
审稿时长
7.5 months
期刊介绍: IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques. The major themes of the journal are: - electromagnetism including electromagnetic theory, computational electromagnetics and EMC - properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale - measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信