基于单光子认证的A (t, n)阈值量子秘密共享

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Jie Zhang, Jie Zhang, Sujuan Qin, Zhengping Jin
{"title":"基于单光子认证的A (t, n)阈值量子秘密共享","authors":"Jie Zhang,&nbsp;Jie Zhang,&nbsp;Sujuan Qin,&nbsp;Zhengping Jin","doi":"10.1007/s11128-025-04672-2","DOIUrl":null,"url":null,"abstract":"<div><p>Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (<i>t</i>, <i>n</i>) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (<i>n</i>, <i>n</i>) scheme. However, most (<i>t</i>, <i>n</i>) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (<i>t</i>, <i>n</i>) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (<i>t</i>, <i>n</i>) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (<i>t</i>, <i>n</i>) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused. \n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A (t, n) threshold quantum secret sharing with authentication based on single photons\",\"authors\":\"Jie Zhang,&nbsp;Jie Zhang,&nbsp;Sujuan Qin,&nbsp;Zhengping Jin\",\"doi\":\"10.1007/s11128-025-04672-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (<i>t</i>, <i>n</i>) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (<i>n</i>, <i>n</i>) scheme. However, most (<i>t</i>, <i>n</i>) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (<i>t</i>, <i>n</i>) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (<i>t</i>, <i>n</i>) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (<i>t</i>, <i>n</i>) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused. \\n</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-025-04672-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04672-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

秘密共享已经成为一种重要的密码原语并得到了广泛的应用。量子秘密共享是一种实现秘密共享的量子方法。(t, n)阈值量子秘密共享只需要n个参与者中的t个合作恢复秘密,比(n, n)方案更灵活。然而,大多数(t, n)阈值方案基本涉及量子纠缠,纠缠态的制备和纠缠交换相对复杂。本文利用基于单光子的拉格朗日插值多项式,提出了一种带认证的(t, n)阈值量子秘密共享方案。与其他(t, n)阈值方案不同,它不涉及纠缠态或纠缠交换。分发者在不泄露完整身份密钥的情况下对参与者进行身份验证。此外,秘密共享是基于拉格朗日插值多项式实现的,允许任何参与者都可以恢复秘密。分析表明,该方案能够抵御外部窃听者和不诚实参与者。与其他方案相比,本方案具有以下优点:(1)易于实现;(2) (t, n)阈值方案增加了方案的灵活性;(3)身份密钥可重复使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A (t, n) threshold quantum secret sharing with authentication based on single photons

Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (tn) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (nn) scheme. However, most (tn) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (tn) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (tn) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (tn) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信