用连续块面扫描电镜和能量色散x射线能谱分析腌制白菜的图像

IF 2.4 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Ji-Young Choi, Seong Yeol Lee, Hwan Hur, Sung-Gi Min
{"title":"用连续块面扫描电镜和能量色散x射线能谱分析腌制白菜的图像","authors":"Ji-Young Choi,&nbsp;Seong Yeol Lee,&nbsp;Hwan Hur,&nbsp;Sung-Gi Min","doi":"10.1007/s10068-024-01733-7","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in the shape and composition of kimchi cabbage cells due to brine and seasoning penetration were observed by serial block-face (SBF)-scanning electron microscopy (SEM) imaging and energy dispersive X-ray spectroscopy (EDS). Raw kimchi cabbage (RKC), unfermented kimchi (UKC), and fermented kimchi (FKC) were prepared as samples. Given the osmotic pressure caused by salt, the cell sizes of UKC and FKC were reduced compared to those of RKC and transformed into a thin and elongated rectangular shape. The volume rendering protocol of the SBF-SEM equipped with an ultramicrotome successfully provided a 3D representation of the kimchi cabbage tissue shape. EDS analysis revealed that the lowest C concentrations and the highest Na and Cl concentrations were found in the cell walls of FKC. This study expands the application of SBF-SEM and EDS to acquire basic data on internal changes and material transfer within kimchi cabbage during kimchi manufacturing.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 4","pages":"885 - 891"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image analysis of kimchi cabbage penetrated with brine and seasoning using a serial block face scanning electron microscope and energy dispersive X-ray spectroscopy\",\"authors\":\"Ji-Young Choi,&nbsp;Seong Yeol Lee,&nbsp;Hwan Hur,&nbsp;Sung-Gi Min\",\"doi\":\"10.1007/s10068-024-01733-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Changes in the shape and composition of kimchi cabbage cells due to brine and seasoning penetration were observed by serial block-face (SBF)-scanning electron microscopy (SEM) imaging and energy dispersive X-ray spectroscopy (EDS). Raw kimchi cabbage (RKC), unfermented kimchi (UKC), and fermented kimchi (FKC) were prepared as samples. Given the osmotic pressure caused by salt, the cell sizes of UKC and FKC were reduced compared to those of RKC and transformed into a thin and elongated rectangular shape. The volume rendering protocol of the SBF-SEM equipped with an ultramicrotome successfully provided a 3D representation of the kimchi cabbage tissue shape. EDS analysis revealed that the lowest C concentrations and the highest Na and Cl concentrations were found in the cell walls of FKC. This study expands the application of SBF-SEM and EDS to acquire basic data on internal changes and material transfer within kimchi cabbage during kimchi manufacturing.</p></div>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"34 4\",\"pages\":\"885 - 891\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10068-024-01733-7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01733-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用连续块面扫描电镜(SBF)成像和能谱分析(EDS)技术,观察了卤水和调味料对白菜细胞形态和组成的影响。以生泡菜(RKC)、未发酵泡菜(UKC)和发酵泡菜(FKC)为样品。在盐的渗透压作用下,与RKC相比,UKC和FKC的细胞尺寸减小,呈细长的矩形形状。配备超微组的SBF-SEM的体积绘制协议成功地提供了泡菜白菜组织形状的三维表示。能谱分析显示,FKC细胞壁中C浓度最低,Na和Cl浓度最高。本研究扩展了SBF-SEM和EDS的应用,以获取泡菜生产过程中泡菜内部变化和物质转移的基本数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image analysis of kimchi cabbage penetrated with brine and seasoning using a serial block face scanning electron microscope and energy dispersive X-ray spectroscopy

Changes in the shape and composition of kimchi cabbage cells due to brine and seasoning penetration were observed by serial block-face (SBF)-scanning electron microscopy (SEM) imaging and energy dispersive X-ray spectroscopy (EDS). Raw kimchi cabbage (RKC), unfermented kimchi (UKC), and fermented kimchi (FKC) were prepared as samples. Given the osmotic pressure caused by salt, the cell sizes of UKC and FKC were reduced compared to those of RKC and transformed into a thin and elongated rectangular shape. The volume rendering protocol of the SBF-SEM equipped with an ultramicrotome successfully provided a 3D representation of the kimchi cabbage tissue shape. EDS analysis revealed that the lowest C concentrations and the highest Na and Cl concentrations were found in the cell walls of FKC. This study expands the application of SBF-SEM and EDS to acquire basic data on internal changes and material transfer within kimchi cabbage during kimchi manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Science and Biotechnology
Food Science and Biotechnology FOOD SCIENCE & TECHNOLOGY-
CiteScore
5.40
自引率
3.40%
发文量
174
审稿时长
2.3 months
期刊介绍: The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信