Besov空间上复合算子的半群

IF 1.2 3区 数学 Q1 MATHEMATICS
Renyu Chen, Yali Dong
{"title":"Besov空间上复合算子的半群","authors":"Renyu Chen,&nbsp;Yali Dong","doi":"10.1007/s43034-025-00411-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize the strong continuity of composition semigroups on analytic Besov spaces <span>\\(B_{p}(1&lt;p&lt;\\infty ).\\)</span> First, we show that every semigroup of composition operators <span>\\(\\{C_{\\varphi _{t}}\\}\\)</span> are strongly continuous on <span>\\(B_{p}(2\\le p&lt;\\infty ).\\)</span> However, we can find a semigroup <span>\\(\\{\\varphi _t\\}\\)</span> such that the induced composition operator <span>\\(C_{\\varphi _t}\\)</span> is not even bounded on <span>\\(B_p(1&lt;p&lt;2).\\)</span> We contribute novel counterexamples grounded in the geometric properties of the image domain of Kœnigs function to illustrate this point. Moreover, we provide a sufficient condition ensuring the strong continuity of any semigroup of composition operators in <span>\\(B_{p}(1&lt;p&lt;\\infty ).\\)</span> Additionally, we establish that <span>\\(\\{C_{\\varphi _{t}}\\}\\)</span> is not uniformly continuous on <span>\\(B_{p}(1&lt;p&lt;\\infty ),\\)</span> unless <span>\\(\\{\\varphi _{t}\\}\\)</span> is trivial.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semigroups of composition operators on the Besov spaces\",\"authors\":\"Renyu Chen,&nbsp;Yali Dong\",\"doi\":\"10.1007/s43034-025-00411-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we characterize the strong continuity of composition semigroups on analytic Besov spaces <span>\\\\(B_{p}(1&lt;p&lt;\\\\infty ).\\\\)</span> First, we show that every semigroup of composition operators <span>\\\\(\\\\{C_{\\\\varphi _{t}}\\\\}\\\\)</span> are strongly continuous on <span>\\\\(B_{p}(2\\\\le p&lt;\\\\infty ).\\\\)</span> However, we can find a semigroup <span>\\\\(\\\\{\\\\varphi _t\\\\}\\\\)</span> such that the induced composition operator <span>\\\\(C_{\\\\varphi _t}\\\\)</span> is not even bounded on <span>\\\\(B_p(1&lt;p&lt;2).\\\\)</span> We contribute novel counterexamples grounded in the geometric properties of the image domain of Kœnigs function to illustrate this point. Moreover, we provide a sufficient condition ensuring the strong continuity of any semigroup of composition operators in <span>\\\\(B_{p}(1&lt;p&lt;\\\\infty ).\\\\)</span> Additionally, we establish that <span>\\\\(\\\\{C_{\\\\varphi _{t}}\\\\}\\\\)</span> is not uniformly continuous on <span>\\\\(B_{p}(1&lt;p&lt;\\\\infty ),\\\\)</span> unless <span>\\\\(\\\\{\\\\varphi _{t}\\\\}\\\\)</span> is trivial.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00411-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00411-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文刻画了解析Besov空间\(B_{p}(1<p<\infty ).\)上复合半群的强连续性。首先,我们证明了复合算子\(\{C_{\varphi _{t}}\}\)的每一个半群在\(B_{p}(2\le p<\infty ).\)上都是强连续的。我们可以找到一个半群\(\{\varphi _t\}\),使得诱导复合算子\(C_{\varphi _t}\)在\(B_p(1<p<2).\)上甚至没有界。我们提供了基于Kœnigs函数的图像域的几何性质的新的反例来说明这一点。此外,我们给出了保证\(B_{p}(1<p<\infty ).\)上任意复合算子半群的强连续性的一个充分条件。另外,我们证明了\(\{C_{\varphi _{t}}\}\)在\(B_{p}(1<p<\infty ),\)上不是一致连续的,除非\(\{\varphi _{t}\}\)是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semigroups of composition operators on the Besov spaces

In this paper, we characterize the strong continuity of composition semigroups on analytic Besov spaces \(B_{p}(1<p<\infty ).\) First, we show that every semigroup of composition operators \(\{C_{\varphi _{t}}\}\) are strongly continuous on \(B_{p}(2\le p<\infty ).\) However, we can find a semigroup \(\{\varphi _t\}\) such that the induced composition operator \(C_{\varphi _t}\) is not even bounded on \(B_p(1<p<2).\) We contribute novel counterexamples grounded in the geometric properties of the image domain of Kœnigs function to illustrate this point. Moreover, we provide a sufficient condition ensuring the strong continuity of any semigroup of composition operators in \(B_{p}(1<p<\infty ).\) Additionally, we establish that \(\{C_{\varphi _{t}}\}\) is not uniformly continuous on \(B_{p}(1<p<\infty ),\) unless \(\{\varphi _{t}\}\) is trivial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信