基于光滑重构的有限极大极小有源函数辨识

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Charl J. Ras, Matthew K. Tam, Daniel J. Uteda
{"title":"基于光滑重构的有限极大极小有源函数辨识","authors":"Charl J. Ras,&nbsp;Matthew K. Tam,&nbsp;Daniel J. Uteda","doi":"10.1007/s00245-025-10229-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider a nonsmooth minimisation problem in which the objective function can be represented as the maximum of finitely many smooth “component functions”. First, we study a smooth min–max reformulation of the problem. Due to this smoothness, the model provides enhanced capability of exploiting the structure of the problem, when compared to methods that attempt to tackle the nonsmooth problem directly. Then, we present several approaches to identify the set of active component functions at a minimiser, all within finitely many iterations of a first order method for solving the smooth model. As is well known, the problem can be equivalently rewritten in terms of these component functions, but a key challenge is to identify this set a priori. Such an identification is clearly beneficial in an algorithmic sense, since we can discard those component functions which are not necessary to describe the solution, which in turn can facilitate faster convergence. Finally, numerical results comparing the accuracy of each of these approaches are presented, along with the effect they have on reducing the complexity of the original problem.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-025-10229-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of Active Component Functions in Finite-Max Minimisation via a Smooth Reformulation\",\"authors\":\"Charl J. Ras,&nbsp;Matthew K. Tam,&nbsp;Daniel J. Uteda\",\"doi\":\"10.1007/s00245-025-10229-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we consider a nonsmooth minimisation problem in which the objective function can be represented as the maximum of finitely many smooth “component functions”. First, we study a smooth min–max reformulation of the problem. Due to this smoothness, the model provides enhanced capability of exploiting the structure of the problem, when compared to methods that attempt to tackle the nonsmooth problem directly. Then, we present several approaches to identify the set of active component functions at a minimiser, all within finitely many iterations of a first order method for solving the smooth model. As is well known, the problem can be equivalently rewritten in terms of these component functions, but a key challenge is to identify this set a priori. Such an identification is clearly beneficial in an algorithmic sense, since we can discard those component functions which are not necessary to describe the solution, which in turn can facilitate faster convergence. Finally, numerical results comparing the accuracy of each of these approaches are presented, along with the effect they have on reducing the complexity of the original problem.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00245-025-10229-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10229-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10229-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑了一个非光滑最小化问题,其中目标函数可以表示为有限多个光滑“分量函数”的最大值。首先,我们研究了该问题的光滑最小-最大重表述。由于这种平滑性,与试图直接解决非平滑问题的方法相比,该模型提供了增强的利用问题结构的能力。然后,我们提出了几种方法来识别在极小值处的主动分量函数集,所有这些方法都是在求解光滑模型的一阶方法的有限多次迭代中实现的。众所周知,这个问题可以等价地用这些组件函数来重写,但关键的挑战是如何先验地确定这一集合。这样的识别在算法意义上显然是有益的,因为我们可以丢弃那些对描述解决方案没有必要的组成函数,这反过来又可以促进更快的收敛。最后,给出了数值结果,比较了每种方法的精度,以及它们对降低原始问题复杂性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Active Component Functions in Finite-Max Minimisation via a Smooth Reformulation

In this work, we consider a nonsmooth minimisation problem in which the objective function can be represented as the maximum of finitely many smooth “component functions”. First, we study a smooth min–max reformulation of the problem. Due to this smoothness, the model provides enhanced capability of exploiting the structure of the problem, when compared to methods that attempt to tackle the nonsmooth problem directly. Then, we present several approaches to identify the set of active component functions at a minimiser, all within finitely many iterations of a first order method for solving the smooth model. As is well known, the problem can be equivalently rewritten in terms of these component functions, but a key challenge is to identify this set a priori. Such an identification is clearly beneficial in an algorithmic sense, since we can discard those component functions which are not necessary to describe the solution, which in turn can facilitate faster convergence. Finally, numerical results comparing the accuracy of each of these approaches are presented, along with the effect they have on reducing the complexity of the original problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信