Philipp Gabriel Mazur, Johannes Werner Melsbach, Detlef Schoder
{"title":"物理问题,虚拟答案:货物装载稳定性的优化实时物理模拟和物理信息学习方法","authors":"Philipp Gabriel Mazur, Johannes Werner Melsbach, Detlef Schoder","doi":"10.1016/j.orp.2025.100329","DOIUrl":null,"url":null,"abstract":"<div><div>Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime.</div></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"14 ","pages":"Article 100329"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability\",\"authors\":\"Philipp Gabriel Mazur, Johannes Werner Melsbach, Detlef Schoder\",\"doi\":\"10.1016/j.orp.2025.100329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime.</div></div>\",\"PeriodicalId\":38055,\"journal\":{\"name\":\"Operations Research Perspectives\",\"volume\":\"14 \",\"pages\":\"Article 100329\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Perspectives\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214716025000053\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716025000053","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Physical question, virtual answer: Optimized real-time physical simulations and physics-informed learning approaches for cargo loading stability
Cargo stability is a crucial requirement for safe cargo loading and transport. Current state-of-the-art approaches simplify cargo loading to an idealized static problem and employ geometric- and force-based approaches. In this research, we model cargo loading stability as a dynamic problem and propose two approaches. We use (a) a physical simulation using a real-time physics engine fitted for cargo loading and (b) a physics-informed learning model trained on cargo loading data. Both approaches are capable of handling dynamic physical behavior, either explicitly through simulation, or implicitly through training a recurrent neural network on physically-biased sequential cargo loading data. Given our two objectives of maximal accuracy and minimal runtime, our benchmarking results show that our approaches can outperform current state-of-the-art static stability methods in terms of accuracy depending on the complexity scenario, but consume more runtime.