Bauer-Furuta型不变量的一个附加不等式,及其在切片性和4流形拓扑中的应用

IF 1.5 1区 数学 Q1 MATHEMATICS
Nobuo Iida , Anubhav Mukherjee , Masaki Taniguchi
{"title":"Bauer-Furuta型不变量的一个附加不等式,及其在切片性和4流形拓扑中的应用","authors":"Nobuo Iida ,&nbsp;Anubhav Mukherjee ,&nbsp;Masaki Taniguchi","doi":"10.1016/j.aim.2025.110134","DOIUrl":null,"url":null,"abstract":"<div><div>Our main result gives an adjunction inequality for embedded surfaces in certain 4-manifolds with contact boundary under a non-vanishing assumption on the Bauer–Furuta type invariants. Using this, we give infinitely many knots in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> that are not smoothly H-slice (that is, bounding a null-homologous disk) in many 4-manifolds but they are topologically H-slice. In particular, we give such knots in the boundaries of the punctured elliptic surfaces <span><math><mi>E</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>)</mo></math></span>. In addition, we give obstructions to codimension-0 orientation-reversing embedding of weak symplectic fillings with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> into closed symplectic 4-manifolds with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>≡</mo><mn>3</mn><mi>mod</mi><mspace></mspace><mn>4</mn></math></span>. From here we prove a Bennequin type inequality for strong symplectic caps of <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>d</mi></mrow></msub><mo>)</mo></math></span>. We also show that any weakly symplectically fillable 3-manifold bounds a 4-manifold with at least two smooth structures.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"466 ","pages":"Article 110134"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adjunction inequality for the Bauer–Furuta type invariants, with applications to sliceness and 4-manifold topology\",\"authors\":\"Nobuo Iida ,&nbsp;Anubhav Mukherjee ,&nbsp;Masaki Taniguchi\",\"doi\":\"10.1016/j.aim.2025.110134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our main result gives an adjunction inequality for embedded surfaces in certain 4-manifolds with contact boundary under a non-vanishing assumption on the Bauer–Furuta type invariants. Using this, we give infinitely many knots in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> that are not smoothly H-slice (that is, bounding a null-homologous disk) in many 4-manifolds but they are topologically H-slice. In particular, we give such knots in the boundaries of the punctured elliptic surfaces <span><math><mi>E</mi><mo>(</mo><mn>2</mn><mi>n</mi><mo>)</mo></math></span>. In addition, we give obstructions to codimension-0 orientation-reversing embedding of weak symplectic fillings with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> into closed symplectic 4-manifolds with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>≡</mo><mn>3</mn><mi>mod</mi><mspace></mspace><mn>4</mn></math></span>. From here we prove a Bennequin type inequality for strong symplectic caps of <span><math><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>s</mi><mi>t</mi><mi>d</mi></mrow></msub><mo>)</mo></math></span>. We also show that any weakly symplectically fillable 3-manifold bounds a 4-manifold with at least two smooth structures.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"466 \",\"pages\":\"Article 110134\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000325\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000325","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Bauer-Furuta型不变量的不消失假设下,给出了具有接触边界的4-流形内嵌曲面的一个附加不等式。利用这一点,我们给出了S3中无限多个结点,它们在许多4流形中不是光滑h片(即包围一个零同源盘),但它们是拓扑h片。特别地,我们在穿孔椭圆曲面E(2n)的边界上给出了这样的结。此外,我们给出了b3=0的弱辛填充在b1=0和b2+≡3mod4的闭辛4流形中的余维0方向反转嵌入的阻碍。由此证明了(S3,ξstd)的强辛帽的一个Bennequin型不等式。我们还证明了任何弱辛可填充的3流形边界都是至少具有两个光滑结构的4流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adjunction inequality for the Bauer–Furuta type invariants, with applications to sliceness and 4-manifold topology
Our main result gives an adjunction inequality for embedded surfaces in certain 4-manifolds with contact boundary under a non-vanishing assumption on the Bauer–Furuta type invariants. Using this, we give infinitely many knots in S3 that are not smoothly H-slice (that is, bounding a null-homologous disk) in many 4-manifolds but they are topologically H-slice. In particular, we give such knots in the boundaries of the punctured elliptic surfaces E(2n). In addition, we give obstructions to codimension-0 orientation-reversing embedding of weak symplectic fillings with b3=0 into closed symplectic 4-manifolds with b1=0 and b2+3mod4. From here we prove a Bennequin type inequality for strong symplectic caps of (S3,ξstd). We also show that any weakly symplectically fillable 3-manifold bounds a 4-manifold with at least two smooth structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信