甘草查尔酮A靶向人前列腺素还原酶1:来自分子动力学和共价对接研究的见解

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sara Abigail Ramírez-Cortés , Adrián Durán-Vargas , Jesús Antonio Rauda-Ceja , Paola Mendoza-Espinosa , Luis Fernando Cofas-Vargas , Armando Cruz-Rangel , Julio Isael Pérez-Carreón , Enrique García-Hernández
{"title":"甘草查尔酮A靶向人前列腺素还原酶1:来自分子动力学和共价对接研究的见解","authors":"Sara Abigail Ramírez-Cortés ,&nbsp;Adrián Durán-Vargas ,&nbsp;Jesús Antonio Rauda-Ceja ,&nbsp;Paola Mendoza-Espinosa ,&nbsp;Luis Fernando Cofas-Vargas ,&nbsp;Armando Cruz-Rangel ,&nbsp;Julio Isael Pérez-Carreón ,&nbsp;Enrique García-Hernández","doi":"10.1016/j.bpc.2025.107410","DOIUrl":null,"url":null,"abstract":"<div><div>Prostaglandin reductase 1 (PTGR1) is an NADPH-dependent enzyme critical to eicosanoid metabolism. Its elevated expression in malignant tumors often correlates with poor prognosis due to its role in protecting cells against reactive oxygen species. This study explores the inhibitory potential of licochalcone A, a flavonoid derived from Xinjiang licorice root, on human PTGR1. Using molecular dynamics simulations, we mapped the enzyme's conformational landscape, revealing a low-energy, rigid-body-like movement of the catalytic domain relative to the nucleotide-binding domain that governs PTGR1's transition between open and closed states. Simulations of NADPH-depleted dimer and NADPH-bound monomer highlighted the critical role of intersubunit interactions and coenzyme binding in defining PTGR1's conformational landscape, offering a deeper understanding of its functional adaptability as a holo-homodimer. Covalent docking, informed by prior chemoproteomic cross-linking data, revealed a highly favorable binding pose for licochalcone A at the NADPH-binding site. This pose aligned with a transient noncovalent binding pose inferred from solvent site-guided molecular docking, emphasizing the stereochemical complementarity of the coenzyme-binding site to licochalcone A. Sequence analysis across PTGR1 orthologs in vertebrates and exploration of 3D structures of human NADPH-binding proteins further underscore the potential of the coenzyme-binding site as a scaffold for developing PTGR1-specific inhibitors, positioning licochalcone A as a promising lead compound.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"320 ","pages":"Article 107410"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting human prostaglandin reductase 1 with Licochalcone A: Insights from molecular dynamics and covalent docking studies\",\"authors\":\"Sara Abigail Ramírez-Cortés ,&nbsp;Adrián Durán-Vargas ,&nbsp;Jesús Antonio Rauda-Ceja ,&nbsp;Paola Mendoza-Espinosa ,&nbsp;Luis Fernando Cofas-Vargas ,&nbsp;Armando Cruz-Rangel ,&nbsp;Julio Isael Pérez-Carreón ,&nbsp;Enrique García-Hernández\",\"doi\":\"10.1016/j.bpc.2025.107410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prostaglandin reductase 1 (PTGR1) is an NADPH-dependent enzyme critical to eicosanoid metabolism. Its elevated expression in malignant tumors often correlates with poor prognosis due to its role in protecting cells against reactive oxygen species. This study explores the inhibitory potential of licochalcone A, a flavonoid derived from Xinjiang licorice root, on human PTGR1. Using molecular dynamics simulations, we mapped the enzyme's conformational landscape, revealing a low-energy, rigid-body-like movement of the catalytic domain relative to the nucleotide-binding domain that governs PTGR1's transition between open and closed states. Simulations of NADPH-depleted dimer and NADPH-bound monomer highlighted the critical role of intersubunit interactions and coenzyme binding in defining PTGR1's conformational landscape, offering a deeper understanding of its functional adaptability as a holo-homodimer. Covalent docking, informed by prior chemoproteomic cross-linking data, revealed a highly favorable binding pose for licochalcone A at the NADPH-binding site. This pose aligned with a transient noncovalent binding pose inferred from solvent site-guided molecular docking, emphasizing the stereochemical complementarity of the coenzyme-binding site to licochalcone A. Sequence analysis across PTGR1 orthologs in vertebrates and exploration of 3D structures of human NADPH-binding proteins further underscore the potential of the coenzyme-binding site as a scaffold for developing PTGR1-specific inhibitors, positioning licochalcone A as a promising lead compound.</div></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"320 \",\"pages\":\"Article 107410\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462225000225\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000225","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺素还原酶1 (PTGR1)是一种nadph依赖性酶,对类二十烷酸代谢至关重要。它在恶性肿瘤中的高表达往往与不良预后相关,因为它具有保护细胞免受活性氧的作用。本研究探讨了新疆甘草根类黄酮licochalcone A对人PTGR1的抑制作用。利用分子动力学模拟,我们绘制了酶的构象图,揭示了催化结构域相对于控制PTGR1在开放和封闭状态之间转变的核苷酸结合结构域的低能,刚体状运动。对nadph缺失二聚体和nadph结合单体的模拟强调了亚基间相互作用和辅酶结合在定义PTGR1构象景观中的关键作用,为其作为全同源二聚体的功能适应性提供了更深入的理解。根据先前的化学蛋白质组交联数据,共价对接揭示了nadph结合位点上低查尔酮a的高度有利结合姿态。该位姿与溶剂位点引导的分子对接推断出的瞬时非共价结合位姿一致,强调了辅酶结合位点与licochalcone a的立体化学互补性。脊椎动物PTGR1同源物的序列分析和人类nadph结合蛋白的3D结构探索进一步强调了辅酶结合位点作为开发PTGR1特异性抑制剂的支架的潜力。将低查尔酮A定位为有前途的先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeting human prostaglandin reductase 1 with Licochalcone A: Insights from molecular dynamics and covalent docking studies

Targeting human prostaglandin reductase 1 with Licochalcone A: Insights from molecular dynamics and covalent docking studies
Prostaglandin reductase 1 (PTGR1) is an NADPH-dependent enzyme critical to eicosanoid metabolism. Its elevated expression in malignant tumors often correlates with poor prognosis due to its role in protecting cells against reactive oxygen species. This study explores the inhibitory potential of licochalcone A, a flavonoid derived from Xinjiang licorice root, on human PTGR1. Using molecular dynamics simulations, we mapped the enzyme's conformational landscape, revealing a low-energy, rigid-body-like movement of the catalytic domain relative to the nucleotide-binding domain that governs PTGR1's transition between open and closed states. Simulations of NADPH-depleted dimer and NADPH-bound monomer highlighted the critical role of intersubunit interactions and coenzyme binding in defining PTGR1's conformational landscape, offering a deeper understanding of its functional adaptability as a holo-homodimer. Covalent docking, informed by prior chemoproteomic cross-linking data, revealed a highly favorable binding pose for licochalcone A at the NADPH-binding site. This pose aligned with a transient noncovalent binding pose inferred from solvent site-guided molecular docking, emphasizing the stereochemical complementarity of the coenzyme-binding site to licochalcone A. Sequence analysis across PTGR1 orthologs in vertebrates and exploration of 3D structures of human NADPH-binding proteins further underscore the potential of the coenzyme-binding site as a scaffold for developing PTGR1-specific inhibitors, positioning licochalcone A as a promising lead compound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信