癌相关成纤维细胞通过分泌WNT家族成员5A促进食管鳞状细胞癌细胞的生长和播散。

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-06-01 Epub Date: 2025-02-15 DOI:10.1007/s11010-025-05223-0
Lishuai Yao, Changshuai Zhou, Libao Liu, Jinyuan He, Youbo Wang, An Wang
{"title":"癌相关成纤维细胞通过分泌WNT家族成员5A促进食管鳞状细胞癌细胞的生长和播散。","authors":"Lishuai Yao, Changshuai Zhou, Libao Liu, Jinyuan He, Youbo Wang, An Wang","doi":"10.1007/s11010-025-05223-0","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a common and aggressive subtype of esophageal cancer. This research investigates the functions of cancer-associated fibroblasts (CAFs) in the malignant phenotype of ESCC and probes the underpinning mechanism. Key CAF-associated proteins in ESCC were identified using bioinformatics analyses. ESCC cell lines were co-cultured with CAFs, followed by the addition of neutralizing antibodies against WNT family member 5A (WNT5A) (Anti-WNT5A; AW) and frizzled class receptor 5 (FZD5) (Anti-FZD5; AF), or a human recombinant protein of WNT5A (rWNT5A; rW). The effects of CAF stimulation and the neutralizing or recombinant proteins on the growth and dissemination of ESCC cells were investigated. In addition, ESCC cells were transplanted into nude mice for in vivo assessment of tumor growth and metastasis. WNT5A was identified as a CAF-associated protein linked to poor prognosis in ESCC. Co-culturing with CAFs augmented proliferation, mobility, and apoptosis resistance of ESCC cells. These effects were negated by the AW or AF but restored by rW. WNT5A interacted with FZD5 to activate the WNT signaling in ESCC cells. The rW treatment also enhanced tumorigenesis and metastasis of xenograft tumors in nude mice, with these effects diminished by AW or AF treatment. This study suggests that CAFs promote growth and dissemination of ESCC cell primarily through the secretion of WNT5A.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3857-3872"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer-associated fibroblasts promote growth and dissemination of esophageal squamous cell carcinoma cells by secreting WNT family member 5A.\",\"authors\":\"Lishuai Yao, Changshuai Zhou, Libao Liu, Jinyuan He, Youbo Wang, An Wang\",\"doi\":\"10.1007/s11010-025-05223-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Esophageal squamous cell carcinoma (ESCC) is a common and aggressive subtype of esophageal cancer. This research investigates the functions of cancer-associated fibroblasts (CAFs) in the malignant phenotype of ESCC and probes the underpinning mechanism. Key CAF-associated proteins in ESCC were identified using bioinformatics analyses. ESCC cell lines were co-cultured with CAFs, followed by the addition of neutralizing antibodies against WNT family member 5A (WNT5A) (Anti-WNT5A; AW) and frizzled class receptor 5 (FZD5) (Anti-FZD5; AF), or a human recombinant protein of WNT5A (rWNT5A; rW). The effects of CAF stimulation and the neutralizing or recombinant proteins on the growth and dissemination of ESCC cells were investigated. In addition, ESCC cells were transplanted into nude mice for in vivo assessment of tumor growth and metastasis. WNT5A was identified as a CAF-associated protein linked to poor prognosis in ESCC. Co-culturing with CAFs augmented proliferation, mobility, and apoptosis resistance of ESCC cells. These effects were negated by the AW or AF but restored by rW. WNT5A interacted with FZD5 to activate the WNT signaling in ESCC cells. The rW treatment also enhanced tumorigenesis and metastasis of xenograft tumors in nude mice, with these effects diminished by AW or AF treatment. This study suggests that CAFs promote growth and dissemination of ESCC cell primarily through the secretion of WNT5A.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"3857-3872\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05223-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05223-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食管鳞状细胞癌(ESCC)是一种常见的侵袭性食管癌亚型。本研究探讨了癌相关成纤维细胞(CAFs)在ESCC恶性表型中的功能,并探讨了其基础机制。利用生物信息学分析鉴定了ESCC中关键的ca相关蛋白。将ESCC细胞系与CAFs共培养,然后加入抗WNT家族成员5A (Anti-WNT5A;AW)和卷曲类受体5 (FZD5) (Anti-FZD5;AF)或人WNT5A重组蛋白(rWNT5A;rW)。研究了CAF刺激和中和蛋白或重组蛋白对ESCC细胞生长和播散的影响。此外,将ESCC细胞移植到裸鼠体内,评估肿瘤生长和转移情况。WNT5A被鉴定为一种与ESCC预后不良相关的ca相关蛋白。与CAFs共培养可增强ESCC细胞的增殖、移动性和抗凋亡能力。这些作用被AW或AF抵消,但被rW恢复。WNT5A与FZD5相互作用激活ESCC细胞中的WNT信号。rW治疗还增强了裸鼠异种移植肿瘤的发生和转移,而AW或AF治疗则减弱了这些作用。本研究提示,CAFs主要通过分泌WNT5A促进ESCC细胞的生长和播散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer-associated fibroblasts promote growth and dissemination of esophageal squamous cell carcinoma cells by secreting WNT family member 5A.

Esophageal squamous cell carcinoma (ESCC) is a common and aggressive subtype of esophageal cancer. This research investigates the functions of cancer-associated fibroblasts (CAFs) in the malignant phenotype of ESCC and probes the underpinning mechanism. Key CAF-associated proteins in ESCC were identified using bioinformatics analyses. ESCC cell lines were co-cultured with CAFs, followed by the addition of neutralizing antibodies against WNT family member 5A (WNT5A) (Anti-WNT5A; AW) and frizzled class receptor 5 (FZD5) (Anti-FZD5; AF), or a human recombinant protein of WNT5A (rWNT5A; rW). The effects of CAF stimulation and the neutralizing or recombinant proteins on the growth and dissemination of ESCC cells were investigated. In addition, ESCC cells were transplanted into nude mice for in vivo assessment of tumor growth and metastasis. WNT5A was identified as a CAF-associated protein linked to poor prognosis in ESCC. Co-culturing with CAFs augmented proliferation, mobility, and apoptosis resistance of ESCC cells. These effects were negated by the AW or AF but restored by rW. WNT5A interacted with FZD5 to activate the WNT signaling in ESCC cells. The rW treatment also enhanced tumorigenesis and metastasis of xenograft tumors in nude mice, with these effects diminished by AW or AF treatment. This study suggests that CAFs promote growth and dissemination of ESCC cell primarily through the secretion of WNT5A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信