形成四分子组合的trna衍生的rna。

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1016/bs.mie.2024.11.014
Prakash Kharel
{"title":"形成四分子组合的trna衍生的rna。","authors":"Prakash Kharel","doi":"10.1016/bs.mie.2024.11.014","DOIUrl":null,"url":null,"abstract":"<p><p>Transfer RNA (tRNA)-derived small RNAs (tDRs) are emerging as a novel class of regulatory molecules with significant implications in gene expression and cellular processes. These tDRs are generated through precise cleavage of precursor or mature tRNAs and can function in a sequence dependent manner or structure dependent manner. Recent studies have uncovered a unique subset of tDRs that can form tetramolecular assemblies, adding a new layer of complexity to their functional repertoire. Tetramolecular tDRs exhibit remarkable stability and functional diversity, influencing processes such as translation regulation, stress response, and cellular signaling. The assembly of these tDRs into tetramers is facilitated by guanine-rich sequence motifs which promote intermolecular interactions essential for their structure and biological activity. Understanding the formation, structural dynamics, and functional roles of tetramolecular tDRs offers new insights into tDR-mediated gene regulation and the potential development of RNA-based therapeutic strategies. This article aims to discuss a set of biochemical, biophysical, and reporter assay-based techniques that can be used to characterize G-quadruplex structures formed by tDRs.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"47-63"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"tRNA-derived RNAs that form tetramolecular assemblies.\",\"authors\":\"Prakash Kharel\",\"doi\":\"10.1016/bs.mie.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transfer RNA (tRNA)-derived small RNAs (tDRs) are emerging as a novel class of regulatory molecules with significant implications in gene expression and cellular processes. These tDRs are generated through precise cleavage of precursor or mature tRNAs and can function in a sequence dependent manner or structure dependent manner. Recent studies have uncovered a unique subset of tDRs that can form tetramolecular assemblies, adding a new layer of complexity to their functional repertoire. Tetramolecular tDRs exhibit remarkable stability and functional diversity, influencing processes such as translation regulation, stress response, and cellular signaling. The assembly of these tDRs into tetramers is facilitated by guanine-rich sequence motifs which promote intermolecular interactions essential for their structure and biological activity. Understanding the formation, structural dynamics, and functional roles of tetramolecular tDRs offers new insights into tDR-mediated gene regulation and the potential development of RNA-based therapeutic strategies. This article aims to discuss a set of biochemical, biophysical, and reporter assay-based techniques that can be used to characterize G-quadruplex structures formed by tDRs.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"711 \",\"pages\":\"47-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.11.014\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

转移RNA (tRNA)衍生的小RNA (tDRs)是一类新兴的调控分子,在基因表达和细胞过程中具有重要意义。这些tdr是通过前体或成熟trna的精确切割产生的,可以以序列依赖或结构依赖的方式发挥作用。最近的研究发现了一种独特的tdr子集,可以形成四分子组装,为其功能库增加了一层新的复杂性。四分子tdr表现出显著的稳定性和功能多样性,影响着翻译调控、应激反应和细胞信号传导等过程。富含鸟嘌呤的序列基序促进了这些tdr的分子间相互作用,这对它们的结构和生物活性至关重要。了解四分子tdr的形成、结构动力学和功能作用,为tdr介导的基因调控和基于rna的治疗策略的潜在发展提供了新的见解。本文旨在讨论一套生化、生物物理和基于报告基因分析的技术,这些技术可用于表征由tdr形成的g -四重结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
tRNA-derived RNAs that form tetramolecular assemblies.

Transfer RNA (tRNA)-derived small RNAs (tDRs) are emerging as a novel class of regulatory molecules with significant implications in gene expression and cellular processes. These tDRs are generated through precise cleavage of precursor or mature tRNAs and can function in a sequence dependent manner or structure dependent manner. Recent studies have uncovered a unique subset of tDRs that can form tetramolecular assemblies, adding a new layer of complexity to their functional repertoire. Tetramolecular tDRs exhibit remarkable stability and functional diversity, influencing processes such as translation regulation, stress response, and cellular signaling. The assembly of these tDRs into tetramers is facilitated by guanine-rich sequence motifs which promote intermolecular interactions essential for their structure and biological activity. Understanding the formation, structural dynamics, and functional roles of tetramolecular tDRs offers new insights into tDR-mediated gene regulation and the potential development of RNA-based therapeutic strategies. This article aims to discuss a set of biochemical, biophysical, and reporter assay-based techniques that can be used to characterize G-quadruplex structures formed by tDRs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信