TGIRT-seq分析trna衍生RNA和相关RNA修饰。

4区 生物学 Q3 Biochemistry, Genetics and Molecular Biology
Methods in enzymology Pub Date : 2025-01-01 Epub Date: 2024-11-22 DOI:10.1016/bs.mie.2024.11.001
Abigail Grace Johnston, Monima Anam, Anindya Dutta, Zhangli Su
{"title":"TGIRT-seq分析trna衍生RNA和相关RNA修饰。","authors":"Abigail Grace Johnston, Monima Anam, Anindya Dutta, Zhangli Su","doi":"10.1016/bs.mie.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>RNA modifications are key regulators for RNA processes. tRNA-derived RNAs are small RNAs with size between 15 and 50 bases long that are processed from mature or precursor tRNAs. Despite their more recent discovery, tRNA-derived RNAs have been found to play regulatory roles in many cellular processes including gene silencing, protein synthesis, stress response, and transgenerational inheritance. Furthermore, tRNA-derived RNAs are highly abundant in bodily fluids, posing as potential biomarkers. A unique feature of tRNA-derived RNAs is that they are rich in RNA modifications. Many of the RNA modifications on tRNA-derived RNAs disrupt Watson-Crick base pairing and will thus stall reverse transcriptase, such as N<sup>1</sup>-methyladenosine (m<sup>1</sup>A), N<sup>1</sup>-methylguanosine (m<sup>1</sup>G) and N<sup>2</sup>, N<sup>2</sup>-dimethylguanosine (m<sup>2</sup><sub>2</sub>G). These RNA modifications add another layer of regulation onto tRNA-derived RNAs' functions and are of interests for future research. However, these RNA modifications could also lead to lower detection of modification-containing RNAs in genome-wide small RNA sequencing analysis due to reverse transcriptase stall. To circumvent this bias, TGIRT (Thermostable Group II Intron Reverse Transcriptase) has been used to readthrough RNA modifications inserting mismatches. These mismatch signatures can then be used to precisely map the modification sites at base resolution. Here we describe the step-by-step experimental protocol to start with purified RNAs from cells or tissues and use TGIRT to make small RNA sequencing library for Illumina sequencing to profile the abundance of tRNA-derived RNAs and the associated RNA modifications.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"711 ","pages":"223-240"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890191/pdf/","citationCount":"0","resultStr":"{\"title\":\"TGIRT-seq to profile tRNA-derived RNAs and associated RNA modifications.\",\"authors\":\"Abigail Grace Johnston, Monima Anam, Anindya Dutta, Zhangli Su\",\"doi\":\"10.1016/bs.mie.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA modifications are key regulators for RNA processes. tRNA-derived RNAs are small RNAs with size between 15 and 50 bases long that are processed from mature or precursor tRNAs. Despite their more recent discovery, tRNA-derived RNAs have been found to play regulatory roles in many cellular processes including gene silencing, protein synthesis, stress response, and transgenerational inheritance. Furthermore, tRNA-derived RNAs are highly abundant in bodily fluids, posing as potential biomarkers. A unique feature of tRNA-derived RNAs is that they are rich in RNA modifications. Many of the RNA modifications on tRNA-derived RNAs disrupt Watson-Crick base pairing and will thus stall reverse transcriptase, such as N<sup>1</sup>-methyladenosine (m<sup>1</sup>A), N<sup>1</sup>-methylguanosine (m<sup>1</sup>G) and N<sup>2</sup>, N<sup>2</sup>-dimethylguanosine (m<sup>2</sup><sub>2</sub>G). These RNA modifications add another layer of regulation onto tRNA-derived RNAs' functions and are of interests for future research. However, these RNA modifications could also lead to lower detection of modification-containing RNAs in genome-wide small RNA sequencing analysis due to reverse transcriptase stall. To circumvent this bias, TGIRT (Thermostable Group II Intron Reverse Transcriptase) has been used to readthrough RNA modifications inserting mismatches. These mismatch signatures can then be used to precisely map the modification sites at base resolution. Here we describe the step-by-step experimental protocol to start with purified RNAs from cells or tissues and use TGIRT to make small RNA sequencing library for Illumina sequencing to profile the abundance of tRNA-derived RNAs and the associated RNA modifications.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"711 \",\"pages\":\"223-240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.11.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.11.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

RNA修饰是RNA过程的关键调控因子。trna衍生的rna是由成熟或前体trna加工而成的小rna,长度在15到50个碱基之间。尽管最近才被发现,trna衍生的rna已被发现在许多细胞过程中发挥调节作用,包括基因沉默、蛋白质合成、应激反应和跨代遗传。此外,trna衍生的rna在体液中含量丰富,可以作为潜在的生物标志物。trna衍生RNA的一个独特特征是它们具有丰富的RNA修饰。trna衍生的RNA上的许多RNA修饰会破坏沃森-克里克碱基配对,从而使逆转录酶停滞,例如n1 -甲基腺苷(m1A)、n1 -甲基鸟苷(m1G)和N2, N2-二甲基鸟苷(m22G)。这些RNA修饰为trna衍生RNA的功能增加了另一层调控,是未来研究的兴趣所在。然而,由于逆转录酶失速,这些RNA修饰也可能导致全基因组小RNA测序分析中含有修饰的RNA的检测降低。为了避免这种偏差,TGIRT(耐热II组内含子逆转录酶)被用于读取插入错配的RNA修饰。然后可以使用这些不匹配签名在基本分辨率上精确地映射修改位点。在这里,我们描述了一步一步的实验方案,从细胞或组织中纯化的RNA开始,使用TGIRT制作小RNA测序文库,用于Illumina测序,以分析trna衍生RNA的丰度和相关RNA修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TGIRT-seq to profile tRNA-derived RNAs and associated RNA modifications.

RNA modifications are key regulators for RNA processes. tRNA-derived RNAs are small RNAs with size between 15 and 50 bases long that are processed from mature or precursor tRNAs. Despite their more recent discovery, tRNA-derived RNAs have been found to play regulatory roles in many cellular processes including gene silencing, protein synthesis, stress response, and transgenerational inheritance. Furthermore, tRNA-derived RNAs are highly abundant in bodily fluids, posing as potential biomarkers. A unique feature of tRNA-derived RNAs is that they are rich in RNA modifications. Many of the RNA modifications on tRNA-derived RNAs disrupt Watson-Crick base pairing and will thus stall reverse transcriptase, such as N1-methyladenosine (m1A), N1-methylguanosine (m1G) and N2, N2-dimethylguanosine (m22G). These RNA modifications add another layer of regulation onto tRNA-derived RNAs' functions and are of interests for future research. However, these RNA modifications could also lead to lower detection of modification-containing RNAs in genome-wide small RNA sequencing analysis due to reverse transcriptase stall. To circumvent this bias, TGIRT (Thermostable Group II Intron Reverse Transcriptase) has been used to readthrough RNA modifications inserting mismatches. These mismatch signatures can then be used to precisely map the modification sites at base resolution. Here we describe the step-by-step experimental protocol to start with purified RNAs from cells or tissues and use TGIRT to make small RNA sequencing library for Illumina sequencing to profile the abundance of tRNA-derived RNAs and the associated RNA modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in enzymology
Methods in enzymology 生物-生化研究方法
CiteScore
2.90
自引率
0.00%
发文量
308
审稿时长
3-6 weeks
期刊介绍: The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信