粪肠球菌通过迷走神经在帕金森病小鼠模型中发挥神经保护作用。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-06-01 Epub Date: 2025-02-15 DOI:10.1007/s12035-025-04741-8
Xian Shao, Tao Wu, Mengyun Li, Matao Zheng, Hui Lin, Xuchen Qi
{"title":"粪肠球菌通过迷走神经在帕金森病小鼠模型中发挥神经保护作用。","authors":"Xian Shao, Tao Wu, Mengyun Li, Matao Zheng, Hui Lin, Xuchen Qi","doi":"10.1007/s12035-025-04741-8","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a common neurodegenerative disease worldwide. Current treatment methods for PD are unable to halt disease progression. The gut microbiota contributes to the neurodevelopment of PD; however, the gut-brain connections and underlying neural bases that regulate this complex behavior are not yet clear. Enterococcus faecalis (EF) is a common commensal bacterium of the gut and a common pathogen associated with hospital-acquired infections. Here, we demonstrated the significant therapeutic effects of a non-pathogenic strain of EF (EF ATCC19433) on PD. In this study, we established a mouse model of PD by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that EF treatment alleviated behavioral impairment, dopaminergic neuronal loss, blood-brain barrier damage, and neuroinflammation induced by MPTP in the mice. Additionally, 16S rRNA sequencing revealed that dysbiosis of PD-related microbial communities induced by MPTP was reversed by EF treatment. Moreover, EF treatment relieved gastrointestinal dysfunction in the mice. The therapeutic efficacy of EF in MPTP-induced PD mice is markedly diminished when the activity of EF is lost. Further mechanistic studies indicated that the neuroprotective effects of EF in PD were associated with the vagus nerve pathway. Following the surgical severance of the vagus nerve through subdiaphragmatic vagotomy, the protective effects of EF on PD were markedly diminished. Our study suggests that EF can alleviate neurofunctional impairments and gastrointestinal disorders associated with PD, indicating that gut-derived microbes influence brain function through the vagus nerve pathway.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7875-7891"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enterococcus faecalis Exerts Neuroprotective Effects via the Vagus Nerve in a Mouse Model of Parkinson's Disease.\",\"authors\":\"Xian Shao, Tao Wu, Mengyun Li, Matao Zheng, Hui Lin, Xuchen Qi\",\"doi\":\"10.1007/s12035-025-04741-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a common neurodegenerative disease worldwide. Current treatment methods for PD are unable to halt disease progression. The gut microbiota contributes to the neurodevelopment of PD; however, the gut-brain connections and underlying neural bases that regulate this complex behavior are not yet clear. Enterococcus faecalis (EF) is a common commensal bacterium of the gut and a common pathogen associated with hospital-acquired infections. Here, we demonstrated the significant therapeutic effects of a non-pathogenic strain of EF (EF ATCC19433) on PD. In this study, we established a mouse model of PD by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that EF treatment alleviated behavioral impairment, dopaminergic neuronal loss, blood-brain barrier damage, and neuroinflammation induced by MPTP in the mice. Additionally, 16S rRNA sequencing revealed that dysbiosis of PD-related microbial communities induced by MPTP was reversed by EF treatment. Moreover, EF treatment relieved gastrointestinal dysfunction in the mice. The therapeutic efficacy of EF in MPTP-induced PD mice is markedly diminished when the activity of EF is lost. Further mechanistic studies indicated that the neuroprotective effects of EF in PD were associated with the vagus nerve pathway. Following the surgical severance of the vagus nerve through subdiaphragmatic vagotomy, the protective effects of EF on PD were markedly diminished. Our study suggests that EF can alleviate neurofunctional impairments and gastrointestinal disorders associated with PD, indicating that gut-derived microbes influence brain function through the vagus nerve pathway.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"7875-7891\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04741-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04741-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是世界范围内常见的神经退行性疾病。目前PD的治疗方法无法阻止疾病进展。肠道菌群对PD的神经发育有促进作用;然而,调节这种复杂行为的肠脑连接和潜在的神经基础尚不清楚。粪肠球菌(Enterococcus faecalis, EF)是一种常见的肠道共生细菌,也是一种与医院获得性感染相关的常见病原体。在这里,我们证明了一种非致病性EF菌株(EF ATCC19433)对PD的显著治疗作用。本研究通过腹腔注射1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)建立小鼠PD模型。我们发现EF治疗可减轻MPTP引起的小鼠行为障碍、多巴胺能神经元丧失、血脑屏障损伤和神经炎症。此外,16S rRNA测序显示,EF治疗可以逆转MPTP诱导的pd相关微生物群落的生态失调。此外,EF治疗还能缓解小鼠的胃肠功能障碍。EF活性丧失后,其对mptp诱导的PD小鼠的治疗效果明显降低。进一步的机制研究表明,EF对PD的神经保护作用与迷走神经通路有关。经膈下迷走神经切断术切断迷走神经后,EF对PD的保护作用明显减弱。我们的研究表明,EF可以减轻PD相关的神经功能损伤和胃肠道疾病,表明肠道来源的微生物通过迷走神经通路影响大脑功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enterococcus faecalis Exerts Neuroprotective Effects via the Vagus Nerve in a Mouse Model of Parkinson's Disease.

Parkinson's disease (PD) is a common neurodegenerative disease worldwide. Current treatment methods for PD are unable to halt disease progression. The gut microbiota contributes to the neurodevelopment of PD; however, the gut-brain connections and underlying neural bases that regulate this complex behavior are not yet clear. Enterococcus faecalis (EF) is a common commensal bacterium of the gut and a common pathogen associated with hospital-acquired infections. Here, we demonstrated the significant therapeutic effects of a non-pathogenic strain of EF (EF ATCC19433) on PD. In this study, we established a mouse model of PD by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that EF treatment alleviated behavioral impairment, dopaminergic neuronal loss, blood-brain barrier damage, and neuroinflammation induced by MPTP in the mice. Additionally, 16S rRNA sequencing revealed that dysbiosis of PD-related microbial communities induced by MPTP was reversed by EF treatment. Moreover, EF treatment relieved gastrointestinal dysfunction in the mice. The therapeutic efficacy of EF in MPTP-induced PD mice is markedly diminished when the activity of EF is lost. Further mechanistic studies indicated that the neuroprotective effects of EF in PD were associated with the vagus nerve pathway. Following the surgical severance of the vagus nerve through subdiaphragmatic vagotomy, the protective effects of EF on PD were markedly diminished. Our study suggests that EF can alleviate neurofunctional impairments and gastrointestinal disorders associated with PD, indicating that gut-derived microbes influence brain function through the vagus nerve pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信