鉴定以硫脲为基础的喹唑啉和氧磷铬胺杂交种作为抑制疟原虫半胱氨酸蛋白酶在滋养体早期生长的抑制剂。

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL
Abdur Rahman , Jaimin D. Bhatt , Bharat C. Dixit , Shazia Anjum , Anju Singh , Tohasib Yusub Chaudhari , Fatima Heyat , Hari Madhav , Mahim Sattar , Tarosh S. Patel , Nasimul Hoda
{"title":"鉴定以硫脲为基础的喹唑啉和氧磷铬胺杂交种作为抑制疟原虫半胱氨酸蛋白酶在滋养体早期生长的抑制剂。","authors":"Abdur Rahman ,&nbsp;Jaimin D. Bhatt ,&nbsp;Bharat C. Dixit ,&nbsp;Shazia Anjum ,&nbsp;Anju Singh ,&nbsp;Tohasib Yusub Chaudhari ,&nbsp;Fatima Heyat ,&nbsp;Hari Madhav ,&nbsp;Mahim Sattar ,&nbsp;Tarosh S. Patel ,&nbsp;Nasimul Hoda","doi":"10.1016/j.bmcl.2025.130135","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria, an infectious disease, impacts approximately half of the global population. To tackle the growing problem of drug resistance to treatments such as artemisinin-based combination therapies (ACT), we synthesized thiourea-based compounds (QS1-QS16) by blending quinazoline and oxospirochromane. These compounds underwent testing to assess their in-vitro efficacy against both drug-sensitive and drug-resistant strains of the <em>Plasmodium</em> parasite. Among all the synthesized compounds, <strong>QS5</strong> showed good inhibitory efficacy against <em>Pf</em>3D7 and <em>Pf</em>W2 with <strong>IC<sub>50</sub> 3.18</strong> and <strong>3.98 µM</strong> respectively, and <strong>QS13</strong> with <strong>IC<sub>50</sub> 3.56</strong> and <strong>4.43 µM</strong> respectively. The promising compounds were screened against the <em>Plasmodium</em> parasite’s falcipain-2 and falcipain-3 enzymes. The ligands <strong>QS5</strong> and <strong>QS13</strong> displayed inhibition against <strong><em>Pf</em>FP-2</strong> (<strong>IC<sub>50</sub> 3.9</strong> and <strong>4.9 µM</strong>) and <strong><em>Pf</em>FP-3</strong> (<strong>IC<sub>50</sub> 4.6</strong> and <strong>5.9 µM</strong>) respectively. Furthermore, the selected molecules showed no significant cytotoxicity in non-cancerous Vero cell lines, and hemolysis assays on healthy RBCs confirmed the molecules’ specific antiplasmodial activity. Docking investigations explored ligand interaction with <em>Pf</em>FP2 and <em>Pf</em>FP3 binding sites. We investigated thiourea-based compounds, notably <strong>QS5</strong> and <strong>QS13</strong>, as potential solutions to combat drug-resistant malaria strains. Our findings suggest that these compounds exhibit promising activity against the parasite at its early stages, offering hope for developing new antimalarial therapies.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"120 ","pages":"Article 130135"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying thiourea-based hybrids of quinazoline and oxospirochromane as inhibitors of Plasmodium cysteine proteases arresting the parasitic growth at the early trophozoite stage\",\"authors\":\"Abdur Rahman ,&nbsp;Jaimin D. Bhatt ,&nbsp;Bharat C. Dixit ,&nbsp;Shazia Anjum ,&nbsp;Anju Singh ,&nbsp;Tohasib Yusub Chaudhari ,&nbsp;Fatima Heyat ,&nbsp;Hari Madhav ,&nbsp;Mahim Sattar ,&nbsp;Tarosh S. Patel ,&nbsp;Nasimul Hoda\",\"doi\":\"10.1016/j.bmcl.2025.130135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Malaria, an infectious disease, impacts approximately half of the global population. To tackle the growing problem of drug resistance to treatments such as artemisinin-based combination therapies (ACT), we synthesized thiourea-based compounds (QS1-QS16) by blending quinazoline and oxospirochromane. These compounds underwent testing to assess their in-vitro efficacy against both drug-sensitive and drug-resistant strains of the <em>Plasmodium</em> parasite. Among all the synthesized compounds, <strong>QS5</strong> showed good inhibitory efficacy against <em>Pf</em>3D7 and <em>Pf</em>W2 with <strong>IC<sub>50</sub> 3.18</strong> and <strong>3.98 µM</strong> respectively, and <strong>QS13</strong> with <strong>IC<sub>50</sub> 3.56</strong> and <strong>4.43 µM</strong> respectively. The promising compounds were screened against the <em>Plasmodium</em> parasite’s falcipain-2 and falcipain-3 enzymes. The ligands <strong>QS5</strong> and <strong>QS13</strong> displayed inhibition against <strong><em>Pf</em>FP-2</strong> (<strong>IC<sub>50</sub> 3.9</strong> and <strong>4.9 µM</strong>) and <strong><em>Pf</em>FP-3</strong> (<strong>IC<sub>50</sub> 4.6</strong> and <strong>5.9 µM</strong>) respectively. Furthermore, the selected molecules showed no significant cytotoxicity in non-cancerous Vero cell lines, and hemolysis assays on healthy RBCs confirmed the molecules’ specific antiplasmodial activity. Docking investigations explored ligand interaction with <em>Pf</em>FP2 and <em>Pf</em>FP3 binding sites. We investigated thiourea-based compounds, notably <strong>QS5</strong> and <strong>QS13</strong>, as potential solutions to combat drug-resistant malaria strains. Our findings suggest that these compounds exhibit promising activity against the parasite at its early stages, offering hope for developing new antimalarial therapies.</div></div>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\"120 \",\"pages\":\"Article 130135\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960894X25000447\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X25000447","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是一种传染病,影响着全球大约一半的人口。为了解决日益严重的以青蒿素为基础的联合疗法(ACT)的耐药问题,我们将喹唑啉和氧匹克romane混合合成了基于硫脲的化合物(QS1-QS16)。对这些化合物进行了测试,以评估它们对药物敏感和耐药疟原虫菌株的体外疗效。在所合成的化合物中,QS5对Pf3D7和PfW2表现出良好的抑制作用,IC50分别为3.18和3.98 µM, QS13的IC50分别为3.56和4.43 µM。对疟原虫的镰状蛋白2和镰状蛋白3酶进行了筛选。配体QS5和QS13对PfFP-2 (IC50分别为3.9和4.9 µM)和PfFP-3 (IC50分别为4.6和5.9 µM)表现出抑制作用。此外,所选分子在非癌性Vero细胞系中没有显着的细胞毒性,健康红细胞的溶血试验证实了分子的特异性抗疟原虫活性。对接研究探讨了配体与PfFP2和PfFP3结合位点的相互作用。我们研究了基于硫脲的化合物,特别是QS5和QS13,作为对抗耐药疟疾菌株的潜在解决方案。我们的研究结果表明,这些化合物在寄生虫的早期阶段表现出有希望的活性,为开发新的抗疟疾疗法提供了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying thiourea-based hybrids of quinazoline and oxospirochromane as inhibitors of Plasmodium cysteine proteases arresting the parasitic growth at the early trophozoite stage

Identifying thiourea-based hybrids of quinazoline and oxospirochromane as inhibitors of Plasmodium cysteine proteases arresting the parasitic growth at the early trophozoite stage
Malaria, an infectious disease, impacts approximately half of the global population. To tackle the growing problem of drug resistance to treatments such as artemisinin-based combination therapies (ACT), we synthesized thiourea-based compounds (QS1-QS16) by blending quinazoline and oxospirochromane. These compounds underwent testing to assess their in-vitro efficacy against both drug-sensitive and drug-resistant strains of the Plasmodium parasite. Among all the synthesized compounds, QS5 showed good inhibitory efficacy against Pf3D7 and PfW2 with IC50 3.18 and 3.98 µM respectively, and QS13 with IC50 3.56 and 4.43 µM respectively. The promising compounds were screened against the Plasmodium parasite’s falcipain-2 and falcipain-3 enzymes. The ligands QS5 and QS13 displayed inhibition against PfFP-2 (IC50 3.9 and 4.9 µM) and PfFP-3 (IC50 4.6 and 5.9 µM) respectively. Furthermore, the selected molecules showed no significant cytotoxicity in non-cancerous Vero cell lines, and hemolysis assays on healthy RBCs confirmed the molecules’ specific antiplasmodial activity. Docking investigations explored ligand interaction with PfFP2 and PfFP3 binding sites. We investigated thiourea-based compounds, notably QS5 and QS13, as potential solutions to combat drug-resistant malaria strains. Our findings suggest that these compounds exhibit promising activity against the parasite at its early stages, offering hope for developing new antimalarial therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
3.70%
发文量
463
审稿时长
27 days
期刊介绍: Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信