Meng Zhou, Yujie Zhang, Aimin He, Weihua Chen, Li Jiang, Miao Lai, Mingqin Zhao, Bing Cui
{"title":"添加吡嗪香料的玉米蛋白微胶囊的性能特征及应用","authors":"Meng Zhou, Yujie Zhang, Aimin He, Weihua Chen, Li Jiang, Miao Lai, Mingqin Zhao, Bing Cui","doi":"10.1002/ffj.3834","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pyrazine spices are prone to loss during application and storage due to their low molecular weight and high volatility. This study utilised zein as the wall material to develop microcapsules containing 2,3-diethyl-5-methylpyrazine (DEMP), aiming to investigate protective and controlled release capabilities. The microcapsules (zein@DEMP) were fabricated using the antisolvent method, with an optimised loading rate of 11.43%, as determined by response surface methodology. Scanning electron microscopy (SEM) revealed that the zein@DEMP microcapsules exhibited a well-dispersed spherical structure, while transmission electron microscopy (TEM) indicated a core-shell structure. Fourier transform infrared (FTIR) spectroscopy further confirmed the successful encapsulation of DEMP. At the same time, pyrolysis results showed that the DEMP could be released under heating without producing any significant harmful compounds. Additionally, heat release kinetics at varying rates exhibited a strong linear fit, and the release kinetic at 80°C followed a first-order kinetic equation. Storage stability tests demonstrated a significant increase in DEMP retention after 30 days at room temperature. Furthermore, the zein@DEMP microcapsules displayed antioxidant properties. When incorporated into heat-not-burn (HNB) cigarettes at a concentration of 20 mg, the zein@DEMP microcapsules improved sensory evaluation. The transfer behaviour of DEMP was also examined. This study underscores the potential of microencapsulation technology in enhancing the thermal stability and sustained-release characteristics of pyrazine spices.</p>\n </div>","PeriodicalId":170,"journal":{"name":"Flavour and Fragrance Journal","volume":"40 2","pages":"251-266"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Characterisation and Application of Zein Microcapsules Loaded With Pyrazine Flavour\",\"authors\":\"Meng Zhou, Yujie Zhang, Aimin He, Weihua Chen, Li Jiang, Miao Lai, Mingqin Zhao, Bing Cui\",\"doi\":\"10.1002/ffj.3834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Pyrazine spices are prone to loss during application and storage due to their low molecular weight and high volatility. This study utilised zein as the wall material to develop microcapsules containing 2,3-diethyl-5-methylpyrazine (DEMP), aiming to investigate protective and controlled release capabilities. The microcapsules (zein@DEMP) were fabricated using the antisolvent method, with an optimised loading rate of 11.43%, as determined by response surface methodology. Scanning electron microscopy (SEM) revealed that the zein@DEMP microcapsules exhibited a well-dispersed spherical structure, while transmission electron microscopy (TEM) indicated a core-shell structure. Fourier transform infrared (FTIR) spectroscopy further confirmed the successful encapsulation of DEMP. At the same time, pyrolysis results showed that the DEMP could be released under heating without producing any significant harmful compounds. Additionally, heat release kinetics at varying rates exhibited a strong linear fit, and the release kinetic at 80°C followed a first-order kinetic equation. Storage stability tests demonstrated a significant increase in DEMP retention after 30 days at room temperature. Furthermore, the zein@DEMP microcapsules displayed antioxidant properties. When incorporated into heat-not-burn (HNB) cigarettes at a concentration of 20 mg, the zein@DEMP microcapsules improved sensory evaluation. The transfer behaviour of DEMP was also examined. This study underscores the potential of microencapsulation technology in enhancing the thermal stability and sustained-release characteristics of pyrazine spices.</p>\\n </div>\",\"PeriodicalId\":170,\"journal\":{\"name\":\"Flavour and Fragrance Journal\",\"volume\":\"40 2\",\"pages\":\"251-266\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flavour and Fragrance Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3834\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flavour and Fragrance Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffj.3834","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Performance Characterisation and Application of Zein Microcapsules Loaded With Pyrazine Flavour
Pyrazine spices are prone to loss during application and storage due to their low molecular weight and high volatility. This study utilised zein as the wall material to develop microcapsules containing 2,3-diethyl-5-methylpyrazine (DEMP), aiming to investigate protective and controlled release capabilities. The microcapsules (zein@DEMP) were fabricated using the antisolvent method, with an optimised loading rate of 11.43%, as determined by response surface methodology. Scanning electron microscopy (SEM) revealed that the zein@DEMP microcapsules exhibited a well-dispersed spherical structure, while transmission electron microscopy (TEM) indicated a core-shell structure. Fourier transform infrared (FTIR) spectroscopy further confirmed the successful encapsulation of DEMP. At the same time, pyrolysis results showed that the DEMP could be released under heating without producing any significant harmful compounds. Additionally, heat release kinetics at varying rates exhibited a strong linear fit, and the release kinetic at 80°C followed a first-order kinetic equation. Storage stability tests demonstrated a significant increase in DEMP retention after 30 days at room temperature. Furthermore, the zein@DEMP microcapsules displayed antioxidant properties. When incorporated into heat-not-burn (HNB) cigarettes at a concentration of 20 mg, the zein@DEMP microcapsules improved sensory evaluation. The transfer behaviour of DEMP was also examined. This study underscores the potential of microencapsulation technology in enhancing the thermal stability and sustained-release characteristics of pyrazine spices.
期刊介绍:
Flavour and Fragrance Journal publishes original research articles, reviews and special reports on all aspects of flavour and fragrance. Its high scientific standards and international character is ensured by a strict refereeing system and an editorial team representing the multidisciplinary expertise of our field of research. Because analysis is the matter of many submissions and supports the data used in many other domains, a special attention is placed on the quality of analytical techniques. All natural or synthetic products eliciting or influencing a sensory stimulus related to gustation or olfaction are eligible for publication in the Journal. Eligible as well are the techniques related to their preparation, characterization and safety. This notably involves analytical and sensory analysis, physical chemistry, modeling, microbiology – antimicrobial properties, biology, chemosensory perception and legislation.
The overall aim is to produce a journal of the highest quality which provides a scientific forum for academia as well as for industry on all aspects of flavors, fragrances and related materials, and which is valued by readers and contributors alike.