Nawoda L. Kapuge Dona, Perla Y. Sauceda-Oloño, Rhett C. Smith
{"title":"木质素衍生物-硫复合材料的热力学性能","authors":"Nawoda L. Kapuge Dona, Perla Y. Sauceda-Oloño, Rhett C. Smith","doi":"10.1002/pol.20240566","DOIUrl":null,"url":null,"abstract":"<p>Lignin, comprising 20%–35% of lignocellulosic biomass, is the second most abundant biopolymer after cellulose. As the bioethanol industry expands, the accumulation of lignin by-products necessitates innovative valorization strategies. This study explores the synthesis and characterization of lignin-derived composites. Specifically, the reaction of 20 wt. % lignin-derived guaiacol or syringol with 80 wt. % elemental sulfur gives composites GS<sub>80</sub> and SS<sub>80</sub>, respectively. The chemical structures of composites were elucidated using GC–MS, <sup>1</sup>H NMR, and UV–Vis spectroscopy, revealing the formation of both S<span></span>C<sub>aryl</sub> and S<span></span>C<sub>alkyl</sub> bonds. Thermal and morphological analysis (via TGA, DSC, PXRD, and SEM-EDS) indicated SS<sub>80</sub> has higher crystallinity and thermal stability than GS<sub>80</sub>, attributed to a higher degree of crosslinking and a greater content of dark sulfur. Mechanical testing showed SS<sub>80</sub> exhibits superior compressional and flexural strengths, and enhanced Young's modulus and Shore hardness, compared to GS<sub>80</sub>. Notably, the mechanical strength parameters for SS<sub>80</sub> are comparable to those of C62 class bricks used in construction applications. These findings suggest that lignin-derived composites, particularly those incorporating syringol, can provide viable alternatives to traditional materials in various applications, contributing to both waste valorization and sustainable materials science.</p>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 4","pages":"789-799"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20240566","citationCount":"0","resultStr":"{\"title\":\"Thermal and Mechanical Properties of Lignin Derivative–Sulfur Composites\",\"authors\":\"Nawoda L. Kapuge Dona, Perla Y. Sauceda-Oloño, Rhett C. Smith\",\"doi\":\"10.1002/pol.20240566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lignin, comprising 20%–35% of lignocellulosic biomass, is the second most abundant biopolymer after cellulose. As the bioethanol industry expands, the accumulation of lignin by-products necessitates innovative valorization strategies. This study explores the synthesis and characterization of lignin-derived composites. Specifically, the reaction of 20 wt. % lignin-derived guaiacol or syringol with 80 wt. % elemental sulfur gives composites GS<sub>80</sub> and SS<sub>80</sub>, respectively. The chemical structures of composites were elucidated using GC–MS, <sup>1</sup>H NMR, and UV–Vis spectroscopy, revealing the formation of both S<span></span>C<sub>aryl</sub> and S<span></span>C<sub>alkyl</sub> bonds. Thermal and morphological analysis (via TGA, DSC, PXRD, and SEM-EDS) indicated SS<sub>80</sub> has higher crystallinity and thermal stability than GS<sub>80</sub>, attributed to a higher degree of crosslinking and a greater content of dark sulfur. Mechanical testing showed SS<sub>80</sub> exhibits superior compressional and flexural strengths, and enhanced Young's modulus and Shore hardness, compared to GS<sub>80</sub>. Notably, the mechanical strength parameters for SS<sub>80</sub> are comparable to those of C62 class bricks used in construction applications. These findings suggest that lignin-derived composites, particularly those incorporating syringol, can provide viable alternatives to traditional materials in various applications, contributing to both waste valorization and sustainable materials science.</p>\",\"PeriodicalId\":16888,\"journal\":{\"name\":\"Journal of Polymer Science\",\"volume\":\"63 4\",\"pages\":\"789-799\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20240566\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240566\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240566","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
木质素占木质纤维素生物量的20%-35%,是仅次于纤维素的第二丰富的生物聚合物。随着生物乙醇工业的发展,木质素副产品的积累需要创新的增值策略。本研究探讨了木质素衍生复合材料的合成和表征。具体来说,就是20wt的反应。%木质素衍生愈创木酚或丁香醇,重量80吨。%单质硫分别得到复合材料GS80和SS80。利用GC-MS、1H NMR和UV-Vis光谱对复合材料的化学结构进行了表征,揭示了S - apple - Caryl键和S - apple - Calkyl键的形成。热分析和形态分析(通过TGA, DSC, PXRD和SEM-EDS)表明,SS80比GS80具有更高的结晶度和热稳定性,这是由于更高的交联度和更高的暗硫含量。力学测试表明,与GS80相比,SS80具有更强的抗压和抗折强度,杨氏模量和邵氏硬度也有所提高。值得注意的是,SS80的机械强度参数与建筑应用中使用的C62级砖相当。这些发现表明,木质素衍生的复合材料,特别是那些含有丁香酚的复合材料,可以在各种应用中提供传统材料的可行替代品,为废物增值和可持续材料科学做出贡献。
Thermal and Mechanical Properties of Lignin Derivative–Sulfur Composites
Lignin, comprising 20%–35% of lignocellulosic biomass, is the second most abundant biopolymer after cellulose. As the bioethanol industry expands, the accumulation of lignin by-products necessitates innovative valorization strategies. This study explores the synthesis and characterization of lignin-derived composites. Specifically, the reaction of 20 wt. % lignin-derived guaiacol or syringol with 80 wt. % elemental sulfur gives composites GS80 and SS80, respectively. The chemical structures of composites were elucidated using GC–MS, 1H NMR, and UV–Vis spectroscopy, revealing the formation of both SCaryl and SCalkyl bonds. Thermal and morphological analysis (via TGA, DSC, PXRD, and SEM-EDS) indicated SS80 has higher crystallinity and thermal stability than GS80, attributed to a higher degree of crosslinking and a greater content of dark sulfur. Mechanical testing showed SS80 exhibits superior compressional and flexural strengths, and enhanced Young's modulus and Shore hardness, compared to GS80. Notably, the mechanical strength parameters for SS80 are comparable to those of C62 class bricks used in construction applications. These findings suggest that lignin-derived composites, particularly those incorporating syringol, can provide viable alternatives to traditional materials in various applications, contributing to both waste valorization and sustainable materials science.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.