智能农业的进展:用计算机视觉进行最先进的植物病害检测的系统文献综述

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Esra Yilmaz, Sevim Ceylan Bocekci, Cengiz Safak, Kazim Yildiz
{"title":"智能农业的进展:用计算机视觉进行最先进的植物病害检测的系统文献综述","authors":"Esra Yilmaz,&nbsp;Sevim Ceylan Bocekci,&nbsp;Cengiz Safak,&nbsp;Kazim Yildiz","doi":"10.1049/cvi2.70004","DOIUrl":null,"url":null,"abstract":"<p>In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70004","citationCount":"0","resultStr":"{\"title\":\"Advancements in smart agriculture: A systematic literature review on state-of-the-art plant disease detection with computer vision\",\"authors\":\"Esra Yilmaz,&nbsp;Sevim Ceylan Bocekci,&nbsp;Cengiz Safak,&nbsp;Kazim Yildiz\",\"doi\":\"10.1049/cvi2.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在快速数字化转型的时代,确保可持续和可追溯的粮食生产比以往任何时候都更加重要。植物病害是对农业的主要威胁,造成重大作物损失和经济损失。检测疾病的标准技术虽然广泛存在,但却是一项漫长而密集的工作,特别是在广泛的农业环境中。本系统的文献综述探讨了智能农业的前沿技术,特别是计算机视觉、机器人、深度学习(DL)和物联网(IoT),这些技术正在重塑植物病害检测和管理。通过分析2021年至2023年间发表的198项研究,从最初的19,838篇论文中,作者揭示了深度学习的主导地位,特别是在PlantVillage等数据集上,并强调了关键的挑战,包括数据集的局限性、缺乏地理多样性和缺乏真实世界的实地数据。此外,作者探讨了物联网、机器人和无人机在加强早期疾病检测方面的有希望的作用,尽管高成本和技术差距对小农构成了重大障碍,特别是在发展中国家。通过系统评价和荟萃分析方法的首选报告项目,本综述综合了这些发现,确定了关键趋势,揭示了研究差距,并为智能农业中植物病害管理的未来提供了可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancements in smart agriculture: A systematic literature review on state-of-the-art plant disease detection with computer vision

Advancements in smart agriculture: A systematic literature review on state-of-the-art plant disease detection with computer vision

In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信