{"title":"智能农业的进展:用计算机视觉进行最先进的植物病害检测的系统文献综述","authors":"Esra Yilmaz, Sevim Ceylan Bocekci, Cengiz Safak, Kazim Yildiz","doi":"10.1049/cvi2.70004","DOIUrl":null,"url":null,"abstract":"<p>In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70004","citationCount":"0","resultStr":"{\"title\":\"Advancements in smart agriculture: A systematic literature review on state-of-the-art plant disease detection with computer vision\",\"authors\":\"Esra Yilmaz, Sevim Ceylan Bocekci, Cengiz Safak, Kazim Yildiz\",\"doi\":\"10.1049/cvi2.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advancements in smart agriculture: A systematic literature review on state-of-the-art plant disease detection with computer vision
In an era of rapid digital transformation, ensuring sustainable and traceable food production is more crucial than ever. Plant diseases, a major threat to agriculture, lead to significant losses in crops and financial damage. Standard techniques for detecting diseases, though widespread, are lengthy and intensive work, especially in extensive agricultural settings. This systematic literature review examines the cutting-edge technologies in smart agriculture specifically computer vision, robotics, deep learning (DL), and Internet of Things (IoT) that are reshaping plant disease detection and management. By analysing 198 studies published between 2021 and 2023, from an initial pool of 19,838 papers, the authors reveal the dominance of DL, particularly with datasets such as PlantVillage, and highlight critical challenges, including dataset limitations, lack of geographical diversity, and the scarcity of real-world field data. Moreover, the authors explore the promising role of IoT, robotics, and drones in enhancing early disease detection, although the high costs and technological gaps present significant barriers for small-scale farmers, especially in developing countries. Through the preferred reporting items for systematic reviews and meta-analyses methodology, this review synthesises these findings, identifying key trends, uncovering research gaps, and offering actionable insights for the future of plant disease management in smart agriculture.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf