基于相似性保持的个性化联邦蒸馏学习的mri脑肿瘤分类

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bo Wu, Donghui Shi, Jose Aguilar
{"title":"基于相似性保持的个性化联邦蒸馏学习的mri脑肿瘤分类","authors":"Bo Wu,&nbsp;Donghui Shi,&nbsp;Jose Aguilar","doi":"10.1002/ima.70046","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Owing to legal restrictions and privacy preservation, it is impractical to consolidate medical data across multiple regions for model training, leading to difficulties in data sharing. Federated learning (FL) methods present a solution to this issue. However, traditional FL encounters difficulties in handling non-independent identically distributed (Non-IID) data, where the data distribution across clients is heterogeneous and not uniformly distributed. Although personalized federated learning (PFL) can tackle the Non-IID issue, it has drawbacks such as lower accuracy rates or high memory usage. Furthermore, knowledge-distillation-based PFL exhibits shortcomings in model learning capabilities. In this study, we propose FedSPD, a novel federated learning framework that integrates similarity-preserving knowledge distillation to bridge the gap between global knowledge and local models. FedSPD reduces discrepancies by aligning feature representations through cosine similarity at the feature level, enabling local models to assimilate global knowledge while preserving personalized characteristics. This approach enhances model performance in heterogeneous environments while mitigating privacy risks by sharing only averaged logits, in line with stringent medical data security requirements. Extensive experiments were conducted on three datasets: MNIST, CIFAR-10, and brain tumor MRI, comparing FedSPD with nine state-of-the-art FL and PFL algorithms. On general datasets, under the IID setting, FedSPD achieved performance comparable to existing methods. In Non-IID scenarios, we employed the Dirichlet distribution to control the data distribution across clients, allowing us to model and assess non-uniform data partitions in our FL settings. FedSPD demonstrated exceptional performance, with accuracy improvements of up to 77.77% over traditional FL methods and up to 4.19% over PFL methods. On the brain tumor MRI dataset, FedSPD outperformed most algorithms under the IID condition. In Non-IID settings, it exhibited even greater advantages, with accuracy improvements of up to 78.41% over traditional FL methods and up to 10.55% over PFL methods. Additionally, FedSPD significantly reduced computational overhead, shortening each training round by up to 67.25% compared to other PFL methods and reducing parameter size by up to 49.34%, thereby improving scalability and efficiency. By effectively integrating global and personalized features, FedSPD not only enhanced model generalization across heterogeneous medical datasets but also strengthened clinical decision-making, contributing to more accurate diagnoses and better patient prognosis. This scalable and privacy-preserving solution meets the practical demands of healthcare applications.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain Tumors Classification in MRIs Based on Personalized Federated Distillation Learning With Similarity-Preserving\",\"authors\":\"Bo Wu,&nbsp;Donghui Shi,&nbsp;Jose Aguilar\",\"doi\":\"10.1002/ima.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Owing to legal restrictions and privacy preservation, it is impractical to consolidate medical data across multiple regions for model training, leading to difficulties in data sharing. Federated learning (FL) methods present a solution to this issue. However, traditional FL encounters difficulties in handling non-independent identically distributed (Non-IID) data, where the data distribution across clients is heterogeneous and not uniformly distributed. Although personalized federated learning (PFL) can tackle the Non-IID issue, it has drawbacks such as lower accuracy rates or high memory usage. Furthermore, knowledge-distillation-based PFL exhibits shortcomings in model learning capabilities. In this study, we propose FedSPD, a novel federated learning framework that integrates similarity-preserving knowledge distillation to bridge the gap between global knowledge and local models. FedSPD reduces discrepancies by aligning feature representations through cosine similarity at the feature level, enabling local models to assimilate global knowledge while preserving personalized characteristics. This approach enhances model performance in heterogeneous environments while mitigating privacy risks by sharing only averaged logits, in line with stringent medical data security requirements. Extensive experiments were conducted on three datasets: MNIST, CIFAR-10, and brain tumor MRI, comparing FedSPD with nine state-of-the-art FL and PFL algorithms. On general datasets, under the IID setting, FedSPD achieved performance comparable to existing methods. In Non-IID scenarios, we employed the Dirichlet distribution to control the data distribution across clients, allowing us to model and assess non-uniform data partitions in our FL settings. FedSPD demonstrated exceptional performance, with accuracy improvements of up to 77.77% over traditional FL methods and up to 4.19% over PFL methods. On the brain tumor MRI dataset, FedSPD outperformed most algorithms under the IID condition. In Non-IID settings, it exhibited even greater advantages, with accuracy improvements of up to 78.41% over traditional FL methods and up to 10.55% over PFL methods. Additionally, FedSPD significantly reduced computational overhead, shortening each training round by up to 67.25% compared to other PFL methods and reducing parameter size by up to 49.34%, thereby improving scalability and efficiency. By effectively integrating global and personalized features, FedSPD not only enhanced model generalization across heterogeneous medical datasets but also strengthened clinical decision-making, contributing to more accurate diagnoses and better patient prognosis. This scalable and privacy-preserving solution meets the practical demands of healthcare applications.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70046\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于法律限制和隐私保护,将多个地区的医疗数据合并用于模型训练是不切实际的,导致数据共享困难。联邦学习(FL)方法为这个问题提供了一个解决方案。然而,传统的FL在处理非独立同分布(Non-IID)数据时遇到困难,其中客户端的数据分布是异构的,而不是均匀分布的。尽管个性化联邦学习(PFL)可以解决非iid问题,但它也有一些缺点,比如准确率较低或内存使用量大。此外,基于知识提炼的PFL在模型学习能力方面存在不足。在本研究中,我们提出了一种新的联邦学习框架FedSPD,它集成了保持相似性的知识蒸馏,以弥合全球知识和局部模型之间的差距。FedSPD通过特征级别的余弦相似性来对齐特征表示,从而减少差异,使局部模型能够在保留个性化特征的同时吸收全局知识。这种方法增强了异构环境中的模型性能,同时通过仅共享平均日志来降低隐私风险,符合严格的医疗数据安全要求。在三个数据集上进行了广泛的实验:MNIST、CIFAR-10和脑肿瘤MRI,将FedSPD与九种最先进的FL和PFL算法进行了比较。在一般数据集上,在IID设置下,FedSPD实现了与现有方法相当的性能。在非iid场景中,我们使用Dirichlet分布来控制客户端的数据分布,允许我们在FL设置中建模和评估非统一数据分区。FedSPD表现出优异的性能,与传统FL方法相比,准确率提高了77.77%,比PFL方法提高了4.19%。在脑肿瘤MRI数据集上,FedSPD在IID条件下的表现优于大多数算法。在非iid环境中,它表现出更大的优势,比传统FL方法的准确率提高了78.41%,比PFL方法的准确率提高了10.55%。此外,与其他PFL方法相比,FedSPD显著降低了计算开销,将每轮训练缩短了67.25%,将参数大小减少了49.34%,从而提高了可扩展性和效率。通过有效整合全局和个性化特征,FedSPD不仅增强了异构医疗数据集的模型泛化,还加强了临床决策,有助于更准确的诊断和更好的患者预后。这种可扩展且保护隐私的解决方案满足医疗保健应用程序的实际需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain Tumors Classification in MRIs Based on Personalized Federated Distillation Learning With Similarity-Preserving

Owing to legal restrictions and privacy preservation, it is impractical to consolidate medical data across multiple regions for model training, leading to difficulties in data sharing. Federated learning (FL) methods present a solution to this issue. However, traditional FL encounters difficulties in handling non-independent identically distributed (Non-IID) data, where the data distribution across clients is heterogeneous and not uniformly distributed. Although personalized federated learning (PFL) can tackle the Non-IID issue, it has drawbacks such as lower accuracy rates or high memory usage. Furthermore, knowledge-distillation-based PFL exhibits shortcomings in model learning capabilities. In this study, we propose FedSPD, a novel federated learning framework that integrates similarity-preserving knowledge distillation to bridge the gap between global knowledge and local models. FedSPD reduces discrepancies by aligning feature representations through cosine similarity at the feature level, enabling local models to assimilate global knowledge while preserving personalized characteristics. This approach enhances model performance in heterogeneous environments while mitigating privacy risks by sharing only averaged logits, in line with stringent medical data security requirements. Extensive experiments were conducted on three datasets: MNIST, CIFAR-10, and brain tumor MRI, comparing FedSPD with nine state-of-the-art FL and PFL algorithms. On general datasets, under the IID setting, FedSPD achieved performance comparable to existing methods. In Non-IID scenarios, we employed the Dirichlet distribution to control the data distribution across clients, allowing us to model and assess non-uniform data partitions in our FL settings. FedSPD demonstrated exceptional performance, with accuracy improvements of up to 77.77% over traditional FL methods and up to 4.19% over PFL methods. On the brain tumor MRI dataset, FedSPD outperformed most algorithms under the IID condition. In Non-IID settings, it exhibited even greater advantages, with accuracy improvements of up to 78.41% over traditional FL methods and up to 10.55% over PFL methods. Additionally, FedSPD significantly reduced computational overhead, shortening each training round by up to 67.25% compared to other PFL methods and reducing parameter size by up to 49.34%, thereby improving scalability and efficiency. By effectively integrating global and personalized features, FedSPD not only enhanced model generalization across heterogeneous medical datasets but also strengthened clinical decision-making, contributing to more accurate diagnoses and better patient prognosis. This scalable and privacy-preserving solution meets the practical demands of healthcare applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信