利用评分和文本一致性的基于bert的复习有用性预测模型

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinzhe Li, Qinglong Li, Dongyeop Ryu, Jaekyeong Kim
{"title":"利用评分和文本一致性的基于bert的复习有用性预测模型","authors":"Xinzhe Li,&nbsp;Qinglong Li,&nbsp;Dongyeop Ryu,&nbsp;Jaekyeong Kim","doi":"10.1007/s10489-024-06100-x","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting review helpfulness (RH) to ensure that consumers make effective purchasing decisions is a significant area of study. Many scholars have attempted to develop accurate review helpfulness prediction (RHP) methodologies. However, most previous studies have mainly focused on predictions using product review texts, and few studies have used product satisfaction as indicated by star ratings, particularly the consistency between review texts and star ratings. This study proposes a novel model called BHelP-CoRT (Bidirectional Encoder Representations from Transformers based RHP model utilizing consistency of ratings and texts) to predict RH. The proposed model consists of a review text encoder, star rating encoder, and text-rating interaction. The review text encoder was developed by applying the BERT model to extract contextual semantic features embedded in review texts. The star rating encoder was designed to embed star ratings into feature vectors. The text-rating interaction was constructed by applying an attention mechanism to extract the text-rating interaction and introduce consistency into the RHP tasks. This study conducted extensive experiments to demonstrate the effectiveness of the proposed model from multiple perspectives using real-world online reviews collected from Amazon. The experimental results show that the proposed model outperforms the state-of-the-art models, indicating that it can improve the RHP performance. Specifically, this effectiveness is reflected in the processing of reviews containing inconsistent information. This study supports the marketing efforts of the e-commerce industry by providing an RHP service to address consumer information overload.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A BERT-based review helpfulness prediction model utilizing consistency of ratings and texts\",\"authors\":\"Xinzhe Li,&nbsp;Qinglong Li,&nbsp;Dongyeop Ryu,&nbsp;Jaekyeong Kim\",\"doi\":\"10.1007/s10489-024-06100-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting review helpfulness (RH) to ensure that consumers make effective purchasing decisions is a significant area of study. Many scholars have attempted to develop accurate review helpfulness prediction (RHP) methodologies. However, most previous studies have mainly focused on predictions using product review texts, and few studies have used product satisfaction as indicated by star ratings, particularly the consistency between review texts and star ratings. This study proposes a novel model called BHelP-CoRT (Bidirectional Encoder Representations from Transformers based RHP model utilizing consistency of ratings and texts) to predict RH. The proposed model consists of a review text encoder, star rating encoder, and text-rating interaction. The review text encoder was developed by applying the BERT model to extract contextual semantic features embedded in review texts. The star rating encoder was designed to embed star ratings into feature vectors. The text-rating interaction was constructed by applying an attention mechanism to extract the text-rating interaction and introduce consistency into the RHP tasks. This study conducted extensive experiments to demonstrate the effectiveness of the proposed model from multiple perspectives using real-world online reviews collected from Amazon. The experimental results show that the proposed model outperforms the state-of-the-art models, indicating that it can improve the RHP performance. Specifically, this effectiveness is reflected in the processing of reviews containing inconsistent information. This study supports the marketing efforts of the e-commerce industry by providing an RHP service to address consumer information overload.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06100-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06100-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

预测评论帮助(RH)以确保消费者做出有效的购买决策是一个重要的研究领域。许多学者试图发展准确的复习帮助预测(RHP)方法。然而,以往的研究大多集中在使用产品评论文本进行预测,很少有研究使用星级表示的产品满意度,特别是评论文本与星级之间的一致性。本研究提出了一种新的模型,称为BHelP-CoRT(利用评级和文本一致性的基于变形金刚的双向编码器表示模型)来预测RH。该模型由评审文本编码器、星级编码器和文本评级交互组成。利用BERT模型提取评审文本中嵌入的上下文语义特征,开发了评审文本编码器。星级编码器的设计是将星级嵌入到特征向量中。采用注意机制提取文本评价交互,并在RHP任务中引入一致性,构建了文本评价交互。本研究利用从亚马逊收集的真实在线评论,从多个角度进行了广泛的实验,以证明所提出模型的有效性。实验结果表明,该模型优于现有的模型,可以提高RHP的性能。具体来说,这种有效性体现在对包含不一致信息的评论的处理上。本研究通过提供RHP服务来解决消费者信息过载的问题,从而支持电子商务行业的营销努力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A BERT-based review helpfulness prediction model utilizing consistency of ratings and texts

Predicting review helpfulness (RH) to ensure that consumers make effective purchasing decisions is a significant area of study. Many scholars have attempted to develop accurate review helpfulness prediction (RHP) methodologies. However, most previous studies have mainly focused on predictions using product review texts, and few studies have used product satisfaction as indicated by star ratings, particularly the consistency between review texts and star ratings. This study proposes a novel model called BHelP-CoRT (Bidirectional Encoder Representations from Transformers based RHP model utilizing consistency of ratings and texts) to predict RH. The proposed model consists of a review text encoder, star rating encoder, and text-rating interaction. The review text encoder was developed by applying the BERT model to extract contextual semantic features embedded in review texts. The star rating encoder was designed to embed star ratings into feature vectors. The text-rating interaction was constructed by applying an attention mechanism to extract the text-rating interaction and introduce consistency into the RHP tasks. This study conducted extensive experiments to demonstrate the effectiveness of the proposed model from multiple perspectives using real-world online reviews collected from Amazon. The experimental results show that the proposed model outperforms the state-of-the-art models, indicating that it can improve the RHP performance. Specifically, this effectiveness is reflected in the processing of reviews containing inconsistent information. This study supports the marketing efforts of the e-commerce industry by providing an RHP service to address consumer information overload.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信