{"title":"分子动力学模拟显示,通过蛋白质工程设计的基于支架的大分子的稳定性增强:一种适用于将Mtb Ag85A转化为多表位疫苗的新方法","authors":"Ditipriya Hazra, Shakilur Rahman, Manisha Ganguly, Amit Kumar Das, Amlan Roychowdhury","doi":"10.1007/s00894-025-06301-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Multi-epitope vaccine (MEV) construction is a technique which combines multiple epitopes, both B cell epitopes and T cell epitopes which have the potential to elicit a much stronger immune response compared to a subunit vaccine. Therefore, recently, a lot of research has been focused on development and improvement of multiepitope vaccines. The strategy of designing a MEV in silico lies in a few basic steps, including procuring the amino acid sequence of the B cell and T cell epitopes from literature search, bioinformatics approach, to construct a potent immunogen capable of eliciting both humoral and cell-mediated response and finally joining these epitopes by linkers. However, a vaccine constructed by merely joining the epitopes may not always result in a stable globular structured protein. In this study, we have focused on developing a strategy where a potential vaccine candidate of <i>Mycobacterium tuberculosis</i> has been used as a scaffold and the low complexity regions of this scaffold have been replaced by the predicated epitopes. Essentially, instead of joining the epitopes by linkers, they have been carefully positioned on a scaffold of a protein that is itself a vaccine candidate to derive a MEV against <i>Mycobacterium tuberculosis.</i></p><h3>Method</h3><p>In this study, a methodology has been detailed to tackle this great challenge using a simple approach of protein engineering. A scaffold-based MEV has been designed against Mtb by converting a vaccine candidate protein, Ag85A, into a scaffold by truncating its low complexity non-immunogenic regions, and the gaps were supplemented by the highly immunogenic epitopes. Replicated 500 ns molecular dynamics simulation at different temperatures (300 K and 310 K) and principal component analysis proved that MEV built on the scaffold is more stable than the conventional one.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulation shows enhanced stability in scaffold-based macromolecule, designed by protein engineering: a novel methodology adapted for converting Mtb Ag85A to a multi-epitope vaccine\",\"authors\":\"Ditipriya Hazra, Shakilur Rahman, Manisha Ganguly, Amit Kumar Das, Amlan Roychowdhury\",\"doi\":\"10.1007/s00894-025-06301-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Multi-epitope vaccine (MEV) construction is a technique which combines multiple epitopes, both B cell epitopes and T cell epitopes which have the potential to elicit a much stronger immune response compared to a subunit vaccine. Therefore, recently, a lot of research has been focused on development and improvement of multiepitope vaccines. The strategy of designing a MEV in silico lies in a few basic steps, including procuring the amino acid sequence of the B cell and T cell epitopes from literature search, bioinformatics approach, to construct a potent immunogen capable of eliciting both humoral and cell-mediated response and finally joining these epitopes by linkers. However, a vaccine constructed by merely joining the epitopes may not always result in a stable globular structured protein. In this study, we have focused on developing a strategy where a potential vaccine candidate of <i>Mycobacterium tuberculosis</i> has been used as a scaffold and the low complexity regions of this scaffold have been replaced by the predicated epitopes. Essentially, instead of joining the epitopes by linkers, they have been carefully positioned on a scaffold of a protein that is itself a vaccine candidate to derive a MEV against <i>Mycobacterium tuberculosis.</i></p><h3>Method</h3><p>In this study, a methodology has been detailed to tackle this great challenge using a simple approach of protein engineering. A scaffold-based MEV has been designed against Mtb by converting a vaccine candidate protein, Ag85A, into a scaffold by truncating its low complexity non-immunogenic regions, and the gaps were supplemented by the highly immunogenic epitopes. Replicated 500 ns molecular dynamics simulation at different temperatures (300 K and 310 K) and principal component analysis proved that MEV built on the scaffold is more stable than the conventional one.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-025-06301-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06301-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular dynamics simulation shows enhanced stability in scaffold-based macromolecule, designed by protein engineering: a novel methodology adapted for converting Mtb Ag85A to a multi-epitope vaccine
Context
Multi-epitope vaccine (MEV) construction is a technique which combines multiple epitopes, both B cell epitopes and T cell epitopes which have the potential to elicit a much stronger immune response compared to a subunit vaccine. Therefore, recently, a lot of research has been focused on development and improvement of multiepitope vaccines. The strategy of designing a MEV in silico lies in a few basic steps, including procuring the amino acid sequence of the B cell and T cell epitopes from literature search, bioinformatics approach, to construct a potent immunogen capable of eliciting both humoral and cell-mediated response and finally joining these epitopes by linkers. However, a vaccine constructed by merely joining the epitopes may not always result in a stable globular structured protein. In this study, we have focused on developing a strategy where a potential vaccine candidate of Mycobacterium tuberculosis has been used as a scaffold and the low complexity regions of this scaffold have been replaced by the predicated epitopes. Essentially, instead of joining the epitopes by linkers, they have been carefully positioned on a scaffold of a protein that is itself a vaccine candidate to derive a MEV against Mycobacterium tuberculosis.
Method
In this study, a methodology has been detailed to tackle this great challenge using a simple approach of protein engineering. A scaffold-based MEV has been designed against Mtb by converting a vaccine candidate protein, Ag85A, into a scaffold by truncating its low complexity non-immunogenic regions, and the gaps were supplemented by the highly immunogenic epitopes. Replicated 500 ns molecular dynamics simulation at different temperatures (300 K and 310 K) and principal component analysis proved that MEV built on the scaffold is more stable than the conventional one.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.