求解时变非线性方程的变参数容噪ZNN的设计与分析及应用

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Zhang, Liming Wang, Guomin Zhong
{"title":"求解时变非线性方程的变参数容噪ZNN的设计与分析及应用","authors":"Yu Zhang,&nbsp;Liming Wang,&nbsp;Guomin Zhong","doi":"10.1007/s10489-025-06304-9","DOIUrl":null,"url":null,"abstract":"<p>Solvers considering time-varying parameters are more suitable for addressing a variety of time-varying problems, whereas traditional fixed-parameter neural networks are somewhat insufficient for efficiently and quickly solving these problems. Many existing zeroing neural networks ensure rapid convergence using the infinite-valued AFs. For solving time-varying nonlinear equations, this paper proposes a finitely-activated variable parameter noise tolerant zeroing neural network (VPNTZNN), applied to trajectory tracking of redundant robotic arms. The designed variable parameters are error-dependent, enabling adaptive adjustment to optimal values as errors fluctuate, thereby ensuring faster convergence of the proposed VPNTZNN. And the constructed variable parameters and activation functions (AFs) do not escalate infinitely over time. Affected by the above variable parameters, the proposed finitely-activated VPNTZNN achieves rapid finite-time convergence with strong noise suppression. Simulation results validate the effectiveness of our method in solving time-variant nonlinear equations and in trajectory tracking of redundant manipulators. Moreover, this approach employs a finite-valued activation function to design a variable-parameter neural network, thereby avoiding the difficulties of practical implementation.</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a variable-parameter noise-tolerant ZNN for solving time-variant nonlinear equations and applications\",\"authors\":\"Yu Zhang,&nbsp;Liming Wang,&nbsp;Guomin Zhong\",\"doi\":\"10.1007/s10489-025-06304-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solvers considering time-varying parameters are more suitable for addressing a variety of time-varying problems, whereas traditional fixed-parameter neural networks are somewhat insufficient for efficiently and quickly solving these problems. Many existing zeroing neural networks ensure rapid convergence using the infinite-valued AFs. For solving time-varying nonlinear equations, this paper proposes a finitely-activated variable parameter noise tolerant zeroing neural network (VPNTZNN), applied to trajectory tracking of redundant robotic arms. The designed variable parameters are error-dependent, enabling adaptive adjustment to optimal values as errors fluctuate, thereby ensuring faster convergence of the proposed VPNTZNN. And the constructed variable parameters and activation functions (AFs) do not escalate infinitely over time. Affected by the above variable parameters, the proposed finitely-activated VPNTZNN achieves rapid finite-time convergence with strong noise suppression. Simulation results validate the effectiveness of our method in solving time-variant nonlinear equations and in trajectory tracking of redundant manipulators. Moreover, this approach employs a finite-valued activation function to design a variable-parameter neural network, thereby avoiding the difficulties of practical implementation.</p>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06304-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06304-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

考虑时变参数的求解器更适合于解决各种时变问题,而传统的固定参数神经网络对于高效、快速地求解这些问题有些不足。许多现有的归零神经网络使用无穷值af来保证快速收敛。为求解时变非线性方程组,提出了一种有限激活变参数容噪归零神经网络(VPNTZNN),并将其应用于冗余机械臂的轨迹跟踪。所设计的可变参数是误差相关的,可以在误差波动时自适应调整到最优值,从而确保所提出的VPNTZNN更快的收敛。构造的可变参数和激活函数(AFs)不会随时间无限升级。在上述可变参数的影响下,本文提出的有限激活VPNTZNN实现了快速的有限时间收敛和强噪声抑制。仿真结果验证了该方法在求解时变非线性方程和冗余机械手轨迹跟踪方面的有效性。此外,该方法采用有限值激活函数来设计变参数神经网络,从而避免了实际实现的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of a variable-parameter noise-tolerant ZNN for solving time-variant nonlinear equations and applications

Solvers considering time-varying parameters are more suitable for addressing a variety of time-varying problems, whereas traditional fixed-parameter neural networks are somewhat insufficient for efficiently and quickly solving these problems. Many existing zeroing neural networks ensure rapid convergence using the infinite-valued AFs. For solving time-varying nonlinear equations, this paper proposes a finitely-activated variable parameter noise tolerant zeroing neural network (VPNTZNN), applied to trajectory tracking of redundant robotic arms. The designed variable parameters are error-dependent, enabling adaptive adjustment to optimal values as errors fluctuate, thereby ensuring faster convergence of the proposed VPNTZNN. And the constructed variable parameters and activation functions (AFs) do not escalate infinitely over time. Affected by the above variable parameters, the proposed finitely-activated VPNTZNN achieves rapid finite-time convergence with strong noise suppression. Simulation results validate the effectiveness of our method in solving time-variant nonlinear equations and in trajectory tracking of redundant manipulators. Moreover, this approach employs a finite-valued activation function to design a variable-parameter neural network, thereby avoiding the difficulties of practical implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信