基于相干约束的频谱聚类算法

IF 3.3 Q3 ENERGY & FUELS
Mario D. Baquedano-Aguilar;Sean Meyn;Arturo Bretas
{"title":"基于相干约束的频谱聚类算法","authors":"Mario D. Baquedano-Aguilar;Sean Meyn;Arturo Bretas","doi":"10.1109/OAJPE.2025.3538619","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for reducing the complexity of large-scale power network models using spectral clustering, aggregation of electrical components, and cost function approximation. Two approaches are explored using unconstrained and constrained spectral clustering to determine areas for effective system reduction. Once the system areas are determined, both loads and generators by type are aggregated, and their new cost function is approximated through polynomial curve-fitting or statistical methods. The performance of reduced networks is evaluated in terms of their ability to follow the true daily cost of the original system over a 24-hour period considering a set of several days. Two test systems are taken as test beds. Application of the methodology to a modified version of the IEEE 39-bus system reduces it from 17 generators to a 4-bus system and 9 generators with about 93% of accuracy. Similarly, the IEEE 118-bus system is reduced from 19 generators to a 3-bus system with three aggregated units achieving over 99% of accuracy. These findings address scalability challenges and enhance accuracy for high and mid-loading level conditions, and by aggregating thermal units with similar cost functions.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"88-99"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870381","citationCount":"0","resultStr":"{\"title\":\"Coherency-Constrained Spectral Clustering for Power Network Reduction\",\"authors\":\"Mario D. Baquedano-Aguilar;Sean Meyn;Arturo Bretas\",\"doi\":\"10.1109/OAJPE.2025.3538619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for reducing the complexity of large-scale power network models using spectral clustering, aggregation of electrical components, and cost function approximation. Two approaches are explored using unconstrained and constrained spectral clustering to determine areas for effective system reduction. Once the system areas are determined, both loads and generators by type are aggregated, and their new cost function is approximated through polynomial curve-fitting or statistical methods. The performance of reduced networks is evaluated in terms of their ability to follow the true daily cost of the original system over a 24-hour period considering a set of several days. Two test systems are taken as test beds. Application of the methodology to a modified version of the IEEE 39-bus system reduces it from 17 generators to a 4-bus system and 9 generators with about 93% of accuracy. Similarly, the IEEE 118-bus system is reduced from 19 generators to a 3-bus system with three aggregated units achieving over 99% of accuracy. These findings address scalability challenges and enhance accuracy for high and mid-loading level conditions, and by aggregating thermal units with similar cost functions.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":\"12 \",\"pages\":\"88-99\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870381\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10870381/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870381/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用谱聚类、电气元件聚合和成本函数近似来降低大规模电网模型复杂性的方法。探索了两种方法,使用无约束和约束谱聚类来确定有效系统约简的区域。系统面积确定后,按类型对负荷和发电机组进行汇总,并通过多项式曲线拟合或统计方法逼近其新的成本函数。简化网络的性能是根据它们在24小时内考虑到一组几天的原始系统的真实每日成本的能力来评估的。以两个测试系统作为测试平台。将该方法应用于IEEE 39总线系统的改进版本,将其从17个发电机减少到4总线系统和9个发电机,准确率约为93%。同样,IEEE 118总线系统从19个发电机减少到3个总线系统,其中三个聚合单元实现了超过99%的准确性。这些发现解决了可扩展性的挑战,并通过聚集具有相似成本函数的热单元,提高了高和中等负载水平条件下的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherency-Constrained Spectral Clustering for Power Network Reduction
This paper presents a methodology for reducing the complexity of large-scale power network models using spectral clustering, aggregation of electrical components, and cost function approximation. Two approaches are explored using unconstrained and constrained spectral clustering to determine areas for effective system reduction. Once the system areas are determined, both loads and generators by type are aggregated, and their new cost function is approximated through polynomial curve-fitting or statistical methods. The performance of reduced networks is evaluated in terms of their ability to follow the true daily cost of the original system over a 24-hour period considering a set of several days. Two test systems are taken as test beds. Application of the methodology to a modified version of the IEEE 39-bus system reduces it from 17 generators to a 4-bus system and 9 generators with about 93% of accuracy. Similarly, the IEEE 118-bus system is reduced from 19 generators to a 3-bus system with three aggregated units achieving over 99% of accuracy. These findings address scalability challenges and enhance accuracy for high and mid-loading level conditions, and by aggregating thermal units with similar cost functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信