无鬼高动态范围成像与移位卷积和流线型通道变压器

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhihua Shen , Fei Li , Yiqiang Wu , Xiaomao Li
{"title":"无鬼高动态范围成像与移位卷积和流线型通道变压器","authors":"Zhihua Shen ,&nbsp;Fei Li ,&nbsp;Yiqiang Wu ,&nbsp;Xiaomao Li","doi":"10.1016/j.displa.2025.102983","DOIUrl":null,"url":null,"abstract":"<div><div>High dynamic range (HDR) imaging merges multiple low dynamic range (LDR) images to generate an image with a wider dynamic range and more authentic details. However, existing HDR algorithms often produce residual ghosts due to challenges in capturing long-range dependencies in scenes with large motion and severe saturation. To address these issues, we propose an HDR deghosting method with shift convolution and a streamlined channel Transformer (SCHDRNet). Specifically, to better aggregate information across frames, we propose a pixel-shift alignment module (PSAM) to enhance the interaction of adjacent pixel features through shift convolution, improving the accuracy of the attention alignment module (AAM). Additionally, we propose a hierarchical streamlined channel Transformer (SCT) that integrates streamlined channel attention, multi-head self-attention, and channel attention blocks. This architecture effectively captures both global and local context, reducing ghosting from large motions and blurring from small movements. Extensive experiments demonstrate that our method minimizes ghosting artifacts and excels in quantitative and qualitative aspects.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102983"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ghost-free high dynamic range imaging with shift convolution and streamlined channel transformer\",\"authors\":\"Zhihua Shen ,&nbsp;Fei Li ,&nbsp;Yiqiang Wu ,&nbsp;Xiaomao Li\",\"doi\":\"10.1016/j.displa.2025.102983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High dynamic range (HDR) imaging merges multiple low dynamic range (LDR) images to generate an image with a wider dynamic range and more authentic details. However, existing HDR algorithms often produce residual ghosts due to challenges in capturing long-range dependencies in scenes with large motion and severe saturation. To address these issues, we propose an HDR deghosting method with shift convolution and a streamlined channel Transformer (SCHDRNet). Specifically, to better aggregate information across frames, we propose a pixel-shift alignment module (PSAM) to enhance the interaction of adjacent pixel features through shift convolution, improving the accuracy of the attention alignment module (AAM). Additionally, we propose a hierarchical streamlined channel Transformer (SCT) that integrates streamlined channel attention, multi-head self-attention, and channel attention blocks. This architecture effectively captures both global and local context, reducing ghosting from large motions and blurring from small movements. Extensive experiments demonstrate that our method minimizes ghosting artifacts and excels in quantitative and qualitative aspects.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"87 \",\"pages\":\"Article 102983\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225000204\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000204","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

高动态范围(HDR)成像将多个低动态范围(LDR)图像合并,生成具有更宽动态范围和更真实细节的图像。然而,现有的HDR算法由于在大运动和严重饱和的场景中捕捉远程依赖关系的挑战而经常产生残余鬼。为了解决这些问题,我们提出了一种使用移位卷积和流线型通道变压器(SCHDRNet)的HDR去重影方法。具体而言,为了更好地跨帧聚合信息,我们提出了像素移位对齐模块(PSAM),通过移位卷积增强相邻像素特征的交互作用,提高了注意对齐模块(AAM)的精度。此外,我们提出了一种分层流线型通道变压器(SCT),它集成了流线型通道注意、多头自注意和通道注意块。这种结构有效地捕捉了全局和局部环境,减少了大运动的重影和小运动的模糊。大量的实验表明,我们的方法最大限度地减少了重影伪影,并在定量和定性方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ghost-free high dynamic range imaging with shift convolution and streamlined channel transformer
High dynamic range (HDR) imaging merges multiple low dynamic range (LDR) images to generate an image with a wider dynamic range and more authentic details. However, existing HDR algorithms often produce residual ghosts due to challenges in capturing long-range dependencies in scenes with large motion and severe saturation. To address these issues, we propose an HDR deghosting method with shift convolution and a streamlined channel Transformer (SCHDRNet). Specifically, to better aggregate information across frames, we propose a pixel-shift alignment module (PSAM) to enhance the interaction of adjacent pixel features through shift convolution, improving the accuracy of the attention alignment module (AAM). Additionally, we propose a hierarchical streamlined channel Transformer (SCT) that integrates streamlined channel attention, multi-head self-attention, and channel attention blocks. This architecture effectively captures both global and local context, reducing ghosting from large motions and blurring from small movements. Extensive experiments demonstrate that our method minimizes ghosting artifacts and excels in quantitative and qualitative aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信