基于Hawkes点过程的异构网络多尺度表示学习

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qi Li, Fan Wang
{"title":"基于Hawkes点过程的异构网络多尺度表示学习","authors":"Qi Li,&nbsp;Fan Wang","doi":"10.1016/j.knosys.2025.113150","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of dynamic heterogeneous network representation learning, current research methods have certain limitations. These limitations are mainly observed in the manual design of meta-paths, the handling of node attribute sparsity, and the fusion of dynamic heterogeneous information. To overcome these challenges, this paper presents a multi-scale representation learning method for heterogeneous networks via Hawkes point processes called MSRL. MSRL models the self-excitation effect among historical events by integrating the Hawkes process and captures the facilitating effect of external structures on event occurrence through a ternary closure process. This study employs the integration of time series analysis with neighbourhood interaction information to automate the extraction of the node pair representation. The MSRL model treats edges as time-stamped events, which not only captures the temporal dependencies between events, but also addresses the imbalance between different node types and the challenge of information fusion from a multi-granularity perspective. In particular, the model enhances the accurate estimation of the probability of node pairs forming edges by analysing the interactions between node pairs and their neighbours, which significantly improves the accuracy of tasks such as prediction. To validate the effectiveness of the MSRL model, an extensive experimental evaluation is conducted in this paper. The experimental results show that the MSRL model outperforms existing baseline models on several benchmark datasets, demonstrating its significant advantages and potential applications in the field of dynamic heterogeneous network representation learning.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"312 ","pages":"Article 113150"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale representation learning for heterogeneous networks via Hawkes point processes\",\"authors\":\"Qi Li,&nbsp;Fan Wang\",\"doi\":\"10.1016/j.knosys.2025.113150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the field of dynamic heterogeneous network representation learning, current research methods have certain limitations. These limitations are mainly observed in the manual design of meta-paths, the handling of node attribute sparsity, and the fusion of dynamic heterogeneous information. To overcome these challenges, this paper presents a multi-scale representation learning method for heterogeneous networks via Hawkes point processes called MSRL. MSRL models the self-excitation effect among historical events by integrating the Hawkes process and captures the facilitating effect of external structures on event occurrence through a ternary closure process. This study employs the integration of time series analysis with neighbourhood interaction information to automate the extraction of the node pair representation. The MSRL model treats edges as time-stamped events, which not only captures the temporal dependencies between events, but also addresses the imbalance between different node types and the challenge of information fusion from a multi-granularity perspective. In particular, the model enhances the accurate estimation of the probability of node pairs forming edges by analysing the interactions between node pairs and their neighbours, which significantly improves the accuracy of tasks such as prediction. To validate the effectiveness of the MSRL model, an extensive experimental evaluation is conducted in this paper. The experimental results show that the MSRL model outperforms existing baseline models on several benchmark datasets, demonstrating its significant advantages and potential applications in the field of dynamic heterogeneous network representation learning.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"312 \",\"pages\":\"Article 113150\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125001972\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125001972","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在动态异构网络表示学习领域,现有的研究方法存在一定的局限性。这些限制主要体现在元路径的手工设计、节点属性稀疏性的处理以及动态异构信息的融合等方面。为了克服这些挑战,本文提出了一种基于Hawkes点过程(MSRL)的异构网络多尺度表示学习方法。MSRL通过整合Hawkes过程对历史事件之间的自激效应进行建模,并通过三元闭合过程捕捉外部结构对事件发生的促进作用。本研究将时间序列分析与邻域交互信息相结合,实现节点对表示的自动提取。MSRL模型将边缘视为带有时间戳的事件,不仅捕获了事件之间的时间依赖关系,而且从多粒度的角度解决了不同节点类型之间的不平衡和信息融合的挑战。特别是,该模型通过分析节点对与相邻节点之间的相互作用,提高了对节点对形成边概率的准确估计,显著提高了预测等任务的准确性。为了验证MSRL模型的有效性,本文进行了广泛的实验评估。实验结果表明,MSRL模型在多个基准数据集上优于现有的基线模型,显示了其在动态异构网络表示学习领域的显著优势和潜在应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale representation learning for heterogeneous networks via Hawkes point processes
In the field of dynamic heterogeneous network representation learning, current research methods have certain limitations. These limitations are mainly observed in the manual design of meta-paths, the handling of node attribute sparsity, and the fusion of dynamic heterogeneous information. To overcome these challenges, this paper presents a multi-scale representation learning method for heterogeneous networks via Hawkes point processes called MSRL. MSRL models the self-excitation effect among historical events by integrating the Hawkes process and captures the facilitating effect of external structures on event occurrence through a ternary closure process. This study employs the integration of time series analysis with neighbourhood interaction information to automate the extraction of the node pair representation. The MSRL model treats edges as time-stamped events, which not only captures the temporal dependencies between events, but also addresses the imbalance between different node types and the challenge of information fusion from a multi-granularity perspective. In particular, the model enhances the accurate estimation of the probability of node pairs forming edges by analysing the interactions between node pairs and their neighbours, which significantly improves the accuracy of tasks such as prediction. To validate the effectiveness of the MSRL model, an extensive experimental evaluation is conducted in this paper. The experimental results show that the MSRL model outperforms existing baseline models on several benchmark datasets, demonstrating its significant advantages and potential applications in the field of dynamic heterogeneous network representation learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信