轴对称荷载条件下3D打印土工格栅模型加筋双层土的评价

IF 4.7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Gabriel M. Oliveira, Isabel M.C.F.G. Falorca
{"title":"轴对称荷载条件下3D打印土工格栅模型加筋双层土的评价","authors":"Gabriel M. Oliveira,&nbsp;Isabel M.C.F.G. Falorca","doi":"10.1016/j.geotexmem.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>A series of drained triaxial tests was carried out on homogeneous and two-layered soil (TLS) samples under low confining pressure. A granite aggregate was selected as the base layer, and sand was used to simulate the subgrade. Geogrids with varying aperture sizes and stiffness values were designed using CAD software and manufactured using 3D printing technology. A method for correcting the cross-sectional area during triaxial TLS testing was developed. The load transfer at the aggregate-geogrid interface was also evaluated. The strength of the TLS samples increased as the relation between the aperture size of the geogrid and the median particle diameter was closer to unity. Consistent results were found for the polylactic acid (PLA), photopolymer (RGD 8560), and polypropylene (PP) geogrids, but better mechanical behavior was observed for the RGD 8560 geogrid. Higher tensile forces at the interface were mobilized in geogrids with greater stiffness. However, the best interface behavior is not solely governed by the geogrid stiffness.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 3","pages":"Pages 798-810"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of two-layered soils reinforced with 3D printed geogrid models under axisymmetric loading conditions\",\"authors\":\"Gabriel M. Oliveira,&nbsp;Isabel M.C.F.G. Falorca\",\"doi\":\"10.1016/j.geotexmem.2025.01.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of drained triaxial tests was carried out on homogeneous and two-layered soil (TLS) samples under low confining pressure. A granite aggregate was selected as the base layer, and sand was used to simulate the subgrade. Geogrids with varying aperture sizes and stiffness values were designed using CAD software and manufactured using 3D printing technology. A method for correcting the cross-sectional area during triaxial TLS testing was developed. The load transfer at the aggregate-geogrid interface was also evaluated. The strength of the TLS samples increased as the relation between the aperture size of the geogrid and the median particle diameter was closer to unity. Consistent results were found for the polylactic acid (PLA), photopolymer (RGD 8560), and polypropylene (PP) geogrids, but better mechanical behavior was observed for the RGD 8560 geogrid. Higher tensile forces at the interface were mobilized in geogrids with greater stiffness. However, the best interface behavior is not solely governed by the geogrid stiffness.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 3\",\"pages\":\"Pages 798-810\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114425000184\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000184","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在低围压条件下,对均匀土和双层土进行了一系列排水三轴试验。选择花岗岩骨料作为基层,用砂土模拟路基。采用CAD软件设计不同孔径大小和刚度值的土工格栅,并采用3D打印技术制造。提出了一种校正三轴TLS测试中截面积的方法。并对土工格栅界面处的荷载传递进行了分析。随着土工格栅孔径大小与中位粒径之间的关系趋于一致,TLS样品的强度增加。聚乳酸(PLA)、光聚合物(RGD 8560)和聚丙烯(PP)土工格栅的力学性能一致,但RGD 8560土工格栅的力学性能更好。在刚度较大的土工格栅中,界面处的拉力也较大。然而,最佳的界面行为并不完全由土工格栅刚度决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of two-layered soils reinforced with 3D printed geogrid models under axisymmetric loading conditions
A series of drained triaxial tests was carried out on homogeneous and two-layered soil (TLS) samples under low confining pressure. A granite aggregate was selected as the base layer, and sand was used to simulate the subgrade. Geogrids with varying aperture sizes and stiffness values were designed using CAD software and manufactured using 3D printing technology. A method for correcting the cross-sectional area during triaxial TLS testing was developed. The load transfer at the aggregate-geogrid interface was also evaluated. The strength of the TLS samples increased as the relation between the aperture size of the geogrid and the median particle diameter was closer to unity. Consistent results were found for the polylactic acid (PLA), photopolymer (RGD 8560), and polypropylene (PP) geogrids, but better mechanical behavior was observed for the RGD 8560 geogrid. Higher tensile forces at the interface were mobilized in geogrids with greater stiffness. However, the best interface behavior is not solely governed by the geogrid stiffness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geotextiles and Geomembranes
Geotextiles and Geomembranes 地学-地球科学综合
CiteScore
9.50
自引率
21.20%
发文量
111
审稿时长
59 days
期刊介绍: The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident. Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信