任意维度的最小旋转及其在假设检验和参数估计中的应用

Jochen Meidow, Horst Hammer
{"title":"任意维度的最小旋转及其在假设检验和参数估计中的应用","authors":"Jochen Meidow,&nbsp;Horst Hammer","doi":"10.1016/j.ophoto.2025.100085","DOIUrl":null,"url":null,"abstract":"<div><div>The rotation of a vector around the origin and in a plane constitutes a minimal rotation. Such a rotation is of vital importance in many applications. Examples are the re-orientation of spacecraft or antennas with minimal effort, the smooth interpolation between sensor poses, and the drawing of circular arcs in 2D and 3D. In numerical linear algebra, minimal rotations in different planes are used to manipulate matrices, e.g., to compute the QR decomposition of a matrix. This review compiles the concepts and formulas for minimal rotations in arbitrary dimensions for easy reference and provides a summary of the mathematical background necessary to understand the techniques described in this paper. The discussed concepts are accompanied by important examples in the context of photogrammetric image analysis. Hypothesis testing and parameter estimation for uncertain geometric entities are described in detail. In both applications, minimal rotations play an important role.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"15 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal rotations in arbitrary dimensions with applications to hypothesis testing and parameter estimation\",\"authors\":\"Jochen Meidow,&nbsp;Horst Hammer\",\"doi\":\"10.1016/j.ophoto.2025.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rotation of a vector around the origin and in a plane constitutes a minimal rotation. Such a rotation is of vital importance in many applications. Examples are the re-orientation of spacecraft or antennas with minimal effort, the smooth interpolation between sensor poses, and the drawing of circular arcs in 2D and 3D. In numerical linear algebra, minimal rotations in different planes are used to manipulate matrices, e.g., to compute the QR decomposition of a matrix. This review compiles the concepts and formulas for minimal rotations in arbitrary dimensions for easy reference and provides a summary of the mathematical background necessary to understand the techniques described in this paper. The discussed concepts are accompanied by important examples in the context of photogrammetric image analysis. Hypothesis testing and parameter estimation for uncertain geometric entities are described in detail. In both applications, minimal rotations play an important role.</div></div>\",\"PeriodicalId\":100730,\"journal\":{\"name\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"volume\":\"15 \",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Open Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667393225000043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矢量绕原点和平面的旋转构成最小旋转。这种旋转在许多应用中是至关重要的。例如,以最小的努力重新定位航天器或天线,传感器姿态之间的平滑插值,以及在2D和3D中绘制圆弧。在数值线性代数中,不同平面上的最小旋转被用来操作矩阵,例如,计算矩阵的QR分解。这篇综述汇编了任意维度的最小旋转的概念和公式,以方便参考,并提供了理解本文所描述的技术所需的数学背景的总结。所讨论的概念伴随着重要的例子在摄影测量图像分析的背景下。详细描述了不确定几何实体的假设检验和参数估计。在这两种应用中,最小旋转都起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal rotations in arbitrary dimensions with applications to hypothesis testing and parameter estimation
The rotation of a vector around the origin and in a plane constitutes a minimal rotation. Such a rotation is of vital importance in many applications. Examples are the re-orientation of spacecraft or antennas with minimal effort, the smooth interpolation between sensor poses, and the drawing of circular arcs in 2D and 3D. In numerical linear algebra, minimal rotations in different planes are used to manipulate matrices, e.g., to compute the QR decomposition of a matrix. This review compiles the concepts and formulas for minimal rotations in arbitrary dimensions for easy reference and provides a summary of the mathematical background necessary to understand the techniques described in this paper. The discussed concepts are accompanied by important examples in the context of photogrammetric image analysis. Hypothesis testing and parameter estimation for uncertain geometric entities are described in detail. In both applications, minimal rotations play an important role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信