{"title":"使用部分同态加密保护隐私的词向量学习","authors":"Shang Ci , Sen Hu , Donghai Guan , Çetin Kaya Koç","doi":"10.1016/j.jisa.2025.103999","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a privacy-preserving scheme for learning <strong>GloVe</strong> word vectors on encrypted data. Users first encrypt their private data using a partially homomorphic encryption algorithm and then send the ciphertext to a cloud server to execute the proposed scheme. The cloud server generates high-quality word vectors for subsequent machine learning tasks by filtering out disturbances. We conduct a theoretical analysis of the security and efficiency of the proposed approach. Experimental results on real-world datasets demonstrate that our scheme effectively trains word vectors without compromising user privacy or the integrity of the word vector model, while keeping the user-side implementation lightweight and offline.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"89 ","pages":"Article 103999"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving word vectors learning using partially homomorphic encryption\",\"authors\":\"Shang Ci , Sen Hu , Donghai Guan , Çetin Kaya Koç\",\"doi\":\"10.1016/j.jisa.2025.103999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a privacy-preserving scheme for learning <strong>GloVe</strong> word vectors on encrypted data. Users first encrypt their private data using a partially homomorphic encryption algorithm and then send the ciphertext to a cloud server to execute the proposed scheme. The cloud server generates high-quality word vectors for subsequent machine learning tasks by filtering out disturbances. We conduct a theoretical analysis of the security and efficiency of the proposed approach. Experimental results on real-world datasets demonstrate that our scheme effectively trains word vectors without compromising user privacy or the integrity of the word vector model, while keeping the user-side implementation lightweight and offline.</div></div>\",\"PeriodicalId\":48638,\"journal\":{\"name\":\"Journal of Information Security and Applications\",\"volume\":\"89 \",\"pages\":\"Article 103999\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Security and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214212625000377\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000377","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Privacy-preserving word vectors learning using partially homomorphic encryption
This paper introduces a privacy-preserving scheme for learning GloVe word vectors on encrypted data. Users first encrypt their private data using a partially homomorphic encryption algorithm and then send the ciphertext to a cloud server to execute the proposed scheme. The cloud server generates high-quality word vectors for subsequent machine learning tasks by filtering out disturbances. We conduct a theoretical analysis of the security and efficiency of the proposed approach. Experimental results on real-world datasets demonstrate that our scheme effectively trains word vectors without compromising user privacy or the integrity of the word vector model, while keeping the user-side implementation lightweight and offline.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.