自相关数据的修正最小二乘比值估计:估计与预测

Satyanarayana Poojari, Sachin Acharya, Varun Kumar S.G., Vinitha Serrao
{"title":"自相关数据的修正最小二乘比值估计:估计与预测","authors":"Satyanarayana Poojari,&nbsp;Sachin Acharya,&nbsp;Varun Kumar S.G.,&nbsp;Vinitha Serrao","doi":"10.1016/j.jcmds.2025.100109","DOIUrl":null,"url":null,"abstract":"<div><div>Autocorrelated errors in regression models make ordinary least squares (OLS) estimators inefficient, potentially leading to the misinterpretation of test procedures. Generalized least squares (GLS) estimation is a more efficient approach than OLS in the presence of autocorrelated errors. The GLS estimators based on Cochrane–Orcutt (COR) and Hildreth–Lu (HU) methods are the most commonly used to estimate unknown model parameters. This study investigates the impact of autocorrelation on parameter estimation and prediction in regression models and introduces a novel approach to address the challenge possessed by autocorrelated errors. In this paper, two modified GLS estimators based on the least square ratio method are proposed namely the Least Square Ratio-Cochrane–Orcutt Estimator (LSRE-COR) estimator and the Least Square Ratio-Hildreth–Lu (LSRE-HU) estimator. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimators with OLS, COR, HU, maximum likelihood estimator (MLE), and least square ratio estimator (LSRE) based on total mean square error (TMSE) and root mean square error (RMSE). The results show that the proposed LSRE-HU and LSRE-COR consistently outperform all other estimators across various levels of autocorrelation and numbers of regressors for moderately large samples. The effectiveness of these methods is illustrated through real-life applications.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"14 ","pages":"Article 100109"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified least squares ratio estimator for autocorrelated data: Estimation and prediction\",\"authors\":\"Satyanarayana Poojari,&nbsp;Sachin Acharya,&nbsp;Varun Kumar S.G.,&nbsp;Vinitha Serrao\",\"doi\":\"10.1016/j.jcmds.2025.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autocorrelated errors in regression models make ordinary least squares (OLS) estimators inefficient, potentially leading to the misinterpretation of test procedures. Generalized least squares (GLS) estimation is a more efficient approach than OLS in the presence of autocorrelated errors. The GLS estimators based on Cochrane–Orcutt (COR) and Hildreth–Lu (HU) methods are the most commonly used to estimate unknown model parameters. This study investigates the impact of autocorrelation on parameter estimation and prediction in regression models and introduces a novel approach to address the challenge possessed by autocorrelated errors. In this paper, two modified GLS estimators based on the least square ratio method are proposed namely the Least Square Ratio-Cochrane–Orcutt Estimator (LSRE-COR) estimator and the Least Square Ratio-Hildreth–Lu (LSRE-HU) estimator. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimators with OLS, COR, HU, maximum likelihood estimator (MLE), and least square ratio estimator (LSRE) based on total mean square error (TMSE) and root mean square error (RMSE). The results show that the proposed LSRE-HU and LSRE-COR consistently outperform all other estimators across various levels of autocorrelation and numbers of regressors for moderately large samples. The effectiveness of these methods is illustrated through real-life applications.</div></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"14 \",\"pages\":\"Article 100109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277241582500001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241582500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归模型中的自相关误差使普通最小二乘(OLS)估计器效率低下,潜在地导致对测试过程的误解。在存在自相关误差的情况下,广义最小二乘(GLS)估计比OLS估计更有效。基于Cochrane-Orcutt (COR)和Hildreth-Lu (HU)方法的GLS估计器是最常用的未知模型参数估计方法。本文研究了自相关对回归模型参数估计和预测的影响,并引入了一种新的方法来解决自相关误差所带来的挑战。本文提出了基于最小二乘比值法的两个改进的GLS估计量,即最小二乘比值- cochrane - orcut估计量(LSRE-COR)和最小二乘比值- hildreth - lu估计量(LSRE-HU)。通过蒙特卡罗仿真研究,比较了基于总均方误差(TMSE)和均方根误差(RMSE)的估计器与OLS、COR、HU、最大似然估计器(MLE)和最小二乘比值估计器(LSRE)的性能。结果表明,对于中等规模的样本,所提出的LSRE-HU和LSRE-COR在各种自相关水平和回归量数量上始终优于所有其他估计器。通过实际应用说明了这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified least squares ratio estimator for autocorrelated data: Estimation and prediction
Autocorrelated errors in regression models make ordinary least squares (OLS) estimators inefficient, potentially leading to the misinterpretation of test procedures. Generalized least squares (GLS) estimation is a more efficient approach than OLS in the presence of autocorrelated errors. The GLS estimators based on Cochrane–Orcutt (COR) and Hildreth–Lu (HU) methods are the most commonly used to estimate unknown model parameters. This study investigates the impact of autocorrelation on parameter estimation and prediction in regression models and introduces a novel approach to address the challenge possessed by autocorrelated errors. In this paper, two modified GLS estimators based on the least square ratio method are proposed namely the Least Square Ratio-Cochrane–Orcutt Estimator (LSRE-COR) estimator and the Least Square Ratio-Hildreth–Lu (LSRE-HU) estimator. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimators with OLS, COR, HU, maximum likelihood estimator (MLE), and least square ratio estimator (LSRE) based on total mean square error (TMSE) and root mean square error (RMSE). The results show that the proposed LSRE-HU and LSRE-COR consistently outperform all other estimators across various levels of autocorrelation and numbers of regressors for moderately large samples. The effectiveness of these methods is illustrated through real-life applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信