表面Li空位对Li10SiP2S12固体电解质水分稳定性的影响:第一性原理计算的见解

Hou-Jen Lai, Santhanamoorthi Nachimuthu, Hao-Xiang Zheng, Jyh-Chiang Jiang
{"title":"表面Li空位对Li10SiP2S12固体电解质水分稳定性的影响:第一性原理计算的见解","authors":"Hou-Jen Lai,&nbsp;Santhanamoorthi Nachimuthu,&nbsp;Hao-Xiang Zheng,&nbsp;Jyh-Chiang Jiang","doi":"10.1016/j.fub.2025.100043","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H<sub>2</sub>S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub>(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub> (v-LSiPS), surface significantly raise the energy barrier for H<sub>2</sub>S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of surface Li vacancies on the moisture stability of Li10SiP2S12 solid electrolyte: Insights from first-principles calculations\",\"authors\":\"Hou-Jen Lai,&nbsp;Santhanamoorthi Nachimuthu,&nbsp;Hao-Xiang Zheng,&nbsp;Jyh-Chiang Jiang\",\"doi\":\"10.1016/j.fub.2025.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H<sub>2</sub>S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub>(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub> (v-LSiPS), surface significantly raise the energy barrier for H<sub>2</sub>S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"5 \",\"pages\":\"Article 100043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295026402500022X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295026402500022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硫化物基固态电解质在全固态锂离子电池的发展中起着至关重要的作用。然而,它们在潮湿条件下易水解,导致有毒H2S气体的释放,严重限制了实际应用。元素取代已被广泛应用于提高硫化醚的离子电导率和化学稳定性。此外,锂空位已被证明可以提高锂离子的电导率,但它们对硫化物sss水分稳定性的影响仍未得到充分探讨。在本研究中,我们利用密度泛函理论(DFT)计算研究了锂空位对Li10SiP2S12(LSiPS)硫化物SSE模型水分稳定性的影响。我们的研究结果表明,Li10SiP2S12 (v-LSiPS)表面的Li空位显著提高了H2S形成的能量垒,表明水分稳定性大大提高。详细的键长分析和电子密度差(EDD)计算表明,在Li空位存在的情况下,P-S键得到加强,为提高稳定性提供了机制基础。这些见解为设计更适合实际ASSLB应用的更健壮的硫化物基sse提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of surface Li vacancies on the moisture stability of Li10SiP2S12 solid electrolyte: Insights from first-principles calculations
Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H2S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li10SiP2S12(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li10SiP2S12 (v-LSiPS), surface significantly raise the energy barrier for H2S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信