{"title":"表面Li空位对Li10SiP2S12固体电解质水分稳定性的影响:第一性原理计算的见解","authors":"Hou-Jen Lai, Santhanamoorthi Nachimuthu, Hao-Xiang Zheng, Jyh-Chiang Jiang","doi":"10.1016/j.fub.2025.100043","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H<sub>2</sub>S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub>(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub> (v-LSiPS), surface significantly raise the energy barrier for H<sub>2</sub>S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"5 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of surface Li vacancies on the moisture stability of Li10SiP2S12 solid electrolyte: Insights from first-principles calculations\",\"authors\":\"Hou-Jen Lai, Santhanamoorthi Nachimuthu, Hao-Xiang Zheng, Jyh-Chiang Jiang\",\"doi\":\"10.1016/j.fub.2025.100043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H<sub>2</sub>S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub>(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li<sub>10</sub>SiP<sub>2</sub>S<sub>12</sub> (v-LSiPS), surface significantly raise the energy barrier for H<sub>2</sub>S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.</div></div>\",\"PeriodicalId\":100560,\"journal\":{\"name\":\"Future Batteries\",\"volume\":\"5 \",\"pages\":\"Article 100043\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295026402500022X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295026402500022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of surface Li vacancies on the moisture stability of Li10SiP2S12 solid electrolyte: Insights from first-principles calculations
Sulfide-based solid-state electrolytes (SSEs) play a crucial role in the development of all-solid-state lithium-ion batteries (ASSLBs). However, their susceptibility to hydrolysis under humid conditions, leading to the release of toxic H2S gas, severely limits practical applications. Elemental substitution has been widely used to enhance both the ionic conductivity and chemical stability of sulfide SSEs. Additionally, lithium vacancies have been shown to increase Li-ion conductivity, yet their effect on the moisture stability of sulfide SSEs remains insufficiently explored. In this study, we investigate the effect of Li-vacancies on the moisture stability of Li10SiP2S12(LSiPS), a model sulfide SSE, using density functional theory (DFT) calculations. Our findings reveal that Li vacancies on the Li10SiP2S12 (v-LSiPS), surface significantly raise the energy barrier for H2S formation, indicating a considerable enhancement in moisture stability. Detailed bond length analyses and electron density difference (EDD) calculations demonstrate strengthened P-S bonds in the presence of Li vacancies, providing a mechanistic basis for improved stability. These insights offer valuable guidance for designing more robust sulfide-based SSEs suitable for real-world ASSLB applications.