基于驾驶警觉性的编码器-解码器语义分割框架的道路像素异常检测

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yipeng Liu, Jianqing Wu, Xiuguang Song
{"title":"基于驾驶警觉性的编码器-解码器语义分割框架的道路像素异常检测","authors":"Yipeng Liu, Jianqing Wu, Xiuguang Song","doi":"10.1111/mice.13443","DOIUrl":null,"url":null,"abstract":"Semantic segmentation struggles with detecting undefined road obstacles, critical for autonomous driving in urban environments. This study addresses the need for accurate unknown obstacle detection, inspired by drivers’ instinctual vigilance toward unexpected objects. It explores the impact of unexpected object position patterns on anomaly detection using human fixation scan‐paths and gaze density heat maps. Data augmentation based on these patterns enhances the outlier dataset for anomaly detection networks. The proposed driving vigilance enhancement framework (DVEF) improves classification accuracy with multi‐scale detailed features and a vigilance enhancement model, generating vigilance score maps to prioritize unknown regions. An improved energy model joint loss function expands vigilance scores, enhancing anomaly detection accuracy. Compared with recent methods on Fishyscapes (FS) LostAndFound, FS Static, and average datasets, average precision improvements of 2.16%, 2.22%, and 2.89% are achieved on these datasets, respectively. In addition, the false positive rate at a true positive rate of 95% are decreased to 5.79%, 5.62%, and 17.89%, respectively. It is indicated that the performance of the encoder–decoder semantic segmentation network is improved by DVEF, with enhanced consistency and robustness.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"33 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel‐wise anomaly detection on road by encoder–decoder semantic segmentation framework with driving vigilance\",\"authors\":\"Yipeng Liu, Jianqing Wu, Xiuguang Song\",\"doi\":\"10.1111/mice.13443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation struggles with detecting undefined road obstacles, critical for autonomous driving in urban environments. This study addresses the need for accurate unknown obstacle detection, inspired by drivers’ instinctual vigilance toward unexpected objects. It explores the impact of unexpected object position patterns on anomaly detection using human fixation scan‐paths and gaze density heat maps. Data augmentation based on these patterns enhances the outlier dataset for anomaly detection networks. The proposed driving vigilance enhancement framework (DVEF) improves classification accuracy with multi‐scale detailed features and a vigilance enhancement model, generating vigilance score maps to prioritize unknown regions. An improved energy model joint loss function expands vigilance scores, enhancing anomaly detection accuracy. Compared with recent methods on Fishyscapes (FS) LostAndFound, FS Static, and average datasets, average precision improvements of 2.16%, 2.22%, and 2.89% are achieved on these datasets, respectively. In addition, the false positive rate at a true positive rate of 95% are decreased to 5.79%, 5.62%, and 17.89%, respectively. It is indicated that the performance of the encoder–decoder semantic segmentation network is improved by DVEF, with enhanced consistency and robustness.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13443\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13443","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

语义分割很难检测到未定义的道路障碍物,这对城市环境中的自动驾驶至关重要。这项研究的灵感来自于驾驶员对意外物体的本能警惕,解决了对未知障碍物精确检测的需求。它探讨了意想不到的物体位置模式对使用人类注视扫描路径和凝视密度热图进行异常检测的影响。基于这些模式的数据增强增强了异常检测网络的离群数据集。提出的驾驶警觉性增强框架(DVEF)通过多尺度细节特征和警觉性增强模型来提高分类精度,生成警觉性评分图来优先考虑未知区域。改进的能量模型联合损失函数扩展了警戒分数,提高了异常检测的准确性。与目前在Fishyscapes (FS) LostAndFound、FS Static和average数据集上的方法相比,平均精度分别提高了2.16%、2.22%和2.89%。此外,在真阳性率为95%的情况下,假阳性率分别降低到5.79%、5.62%和17.89%。结果表明,该算法提高了编解码器语义分割网络的性能,增强了网络的一致性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel‐wise anomaly detection on road by encoder–decoder semantic segmentation framework with driving vigilance
Semantic segmentation struggles with detecting undefined road obstacles, critical for autonomous driving in urban environments. This study addresses the need for accurate unknown obstacle detection, inspired by drivers’ instinctual vigilance toward unexpected objects. It explores the impact of unexpected object position patterns on anomaly detection using human fixation scan‐paths and gaze density heat maps. Data augmentation based on these patterns enhances the outlier dataset for anomaly detection networks. The proposed driving vigilance enhancement framework (DVEF) improves classification accuracy with multi‐scale detailed features and a vigilance enhancement model, generating vigilance score maps to prioritize unknown regions. An improved energy model joint loss function expands vigilance scores, enhancing anomaly detection accuracy. Compared with recent methods on Fishyscapes (FS) LostAndFound, FS Static, and average datasets, average precision improvements of 2.16%, 2.22%, and 2.89% are achieved on these datasets, respectively. In addition, the false positive rate at a true positive rate of 95% are decreased to 5.79%, 5.62%, and 17.89%, respectively. It is indicated that the performance of the encoder–decoder semantic segmentation network is improved by DVEF, with enhanced consistency and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信