Rui Bai, Zhi-Hao Zhao, Mingxuan Liu, Wenxiu Ma, Jin Lin, Siying An, Jiaxin He, Zhenpeng Liu, Lei Zhang, Hui Mei, Jian Zhang
{"title":"强吸电子效应激活无金属羧酸阴离子在电催化乙炔半氢化反应中的高效活性位点。","authors":"Rui Bai, Zhi-Hao Zhao, Mingxuan Liu, Wenxiu Ma, Jin Lin, Siying An, Jiaxin He, Zhenpeng Liu, Lei Zhang, Hui Mei, Jian Zhang","doi":"10.1021/jacs.4c17260","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF<sub>3</sub>) group intrinsically transforms the neighboring carboxylate anions (-COO<sup>-</sup>) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O<sup>-</sup> sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO<sup>-</sup> anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm<sup>2</sup> with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO<sup>-</sup> anions as active center and promises its application in electrocatalysis.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"6880-6885"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Electron-Withdrawing Effect Activates Metal-Free Carboxylate Anion into Efficient Active Sites for Electrocatalytic Acetylene Semihydrogenation.\",\"authors\":\"Rui Bai, Zhi-Hao Zhao, Mingxuan Liu, Wenxiu Ma, Jin Lin, Siying An, Jiaxin He, Zhenpeng Liu, Lei Zhang, Hui Mei, Jian Zhang\",\"doi\":\"10.1021/jacs.4c17260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF<sub>3</sub>) group intrinsically transforms the neighboring carboxylate anions (-COO<sup>-</sup>) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O<sup>-</sup> sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO<sup>-</sup> anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm<sup>2</sup> with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO<sup>-</sup> anions as active center and promises its application in electrocatalysis.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"6880-6885\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c17260\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17260","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Strong Electron-Withdrawing Effect Activates Metal-Free Carboxylate Anion into Efficient Active Sites for Electrocatalytic Acetylene Semihydrogenation.
The exploration of novel and high-performance organo-electrocatalysts with well-defined active sites is vital for understanding catalytic mechanisms and replacing metal-based catalysts, but remains a formidable challenge. Here, we report metal-free trifluoroacetate as a new organo-electrocatalyst, where the strong electron-withdrawing trifluoromethyl (-CF3) group intrinsically transforms the neighboring carboxylate anions (-COO-) into highly efficient active sites for electrocatalytic acetylene semihydrogenation. The electrophilic acetylene molecule bonds to the negatively charged O- sites of the carboxylate anion via the σ-configuration. Benefiting from precise molecular engineering of electron-withdrawing groups, the ethylene partial current density presents a volcano relationship with the total natural charge of the -COO- anions. In 1 M KOH aqueous solution, trifluoroacetate delivers an ethylene partial current density of 260 mA/cm2 with an ethylene Faradaic efficiency of 96.8% at -0.9 V versus the reversible hydrogen electrode (RHE) under a pure acetylene atmosphere, outperforming metal-based electrocatalysts. This work presents a new type of high-activity organo-electrocatalysts with -COO- anions as active center and promises its application in electrocatalysis.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.