Workflow4Metabolomics (W4M):一个用户友好的代谢组学平台,用于分析质谱和核磁共振数据。

Cédric Delporte, Marie Tremblay-Franco, Yann Guitton, Cécile Canlet, Ralf J. M. Weber, Helge Hecht, Elliott James Price, Jana Klánová, Charlotte Joly, Céline Dalle, Julien Saint-Vanne, Etienne Thévenot, Isabelle Schmitz, Sylvain Chéreau, Sylvain Dechaumet, Binta Diémé, Franck Giacomoni, Gildas Le Corguillé, Mélanie Pétéra, Florence Souard
{"title":"Workflow4Metabolomics (W4M):一个用户友好的代谢组学平台,用于分析质谱和核磁共振数据。","authors":"Cédric Delporte,&nbsp;Marie Tremblay-Franco,&nbsp;Yann Guitton,&nbsp;Cécile Canlet,&nbsp;Ralf J. M. Weber,&nbsp;Helge Hecht,&nbsp;Elliott James Price,&nbsp;Jana Klánová,&nbsp;Charlotte Joly,&nbsp;Céline Dalle,&nbsp;Julien Saint-Vanne,&nbsp;Etienne Thévenot,&nbsp;Isabelle Schmitz,&nbsp;Sylvain Chéreau,&nbsp;Sylvain Dechaumet,&nbsp;Binta Diémé,&nbsp;Franck Giacomoni,&nbsp;Gildas Le Corguillé,&nbsp;Mélanie Pétéra,&nbsp;Florence Souard","doi":"10.1002/cpz1.70095","DOIUrl":null,"url":null,"abstract":"<p>Various spectrometric methods can be used to conduct metabolomics studies. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) coupled with separation methods, such as liquid or gas chromatography (LC and GC, respectively), are the most commonly used techniques. Once the raw data have been obtained, the real challenge lies in the bioinformatics required to conduct: (i) data processing (including preprocessing, normalization, and quality control); (ii) statistical analysis for comparative studies (such as univariate and multivariate analyses, including PCA or PLS-DA/OPLS-DA); (iii) annotation of the metabolites of interest; and (iv) interpretation of the relationships between key metabolites and the relevant phenotypes or scientific questions to be addressed. Here, we will introduce and detail a stepwise protocol for use of the Workflow4Metabolomics platform (W4M), which provides user-friendly access to workflows for processing of LC–MS, GC–MS, and NMR data. Those modular and extensible workflows are composed of existing standalone components (e.g., XCMS and CAMERA packages) as well as a suite of complementary W4M-implemented modules. This tool suite is accessible worldwide through a web interface and is hosted on UseGalaxy France. The extensible Virtual Research Environment (VRE) provided offers pre-configured workflows for metabolomics communities (platforms, end users, etc.), as well as possibilities for sharing among users. By providing a consistent ecosystem of tools and workflows through Galaxy, W4M makes it possible to process MS and NMR data from hundreds of samples using an ordinary personal computer, after step-by-step workflow optimization. © 2025 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: W4M account creation, working history preparation, and data upload</p><p><b>Support Protocol 1</b>: How to prepare an NMR zip file</p><p><b>Support Protocol 2</b>: How to convert MS data from proprietary format to open format</p><p><b>Support Protocol 3</b>: How to get help with W4M (IFB forum) and how to report a problem on the GitHub repository</p><p><b>Basic Protocol 2</b>: LC–MS data processing</p><p><b>Alternate Protocol 1</b>: GC–MS data processing</p><p><b>Alternate Protocol 2</b>: NMR data processing</p><p><b>Basic Protocol 3</b>: Statistical analysis</p><p><b>Basic Protocol 4</b>: Annotation of metabolites from LC–MS data</p><p><b>Alternate Protocol 3</b>: Annotation of metabolites from NMR data</p>","PeriodicalId":93970,"journal":{"name":"Current protocols","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Workflow4Metabolomics (W4M): A User-Friendly Metabolomics Platform for Analysis of Mass Spectrometry and Nuclear Magnetic Resonance Data\",\"authors\":\"Cédric Delporte,&nbsp;Marie Tremblay-Franco,&nbsp;Yann Guitton,&nbsp;Cécile Canlet,&nbsp;Ralf J. M. Weber,&nbsp;Helge Hecht,&nbsp;Elliott James Price,&nbsp;Jana Klánová,&nbsp;Charlotte Joly,&nbsp;Céline Dalle,&nbsp;Julien Saint-Vanne,&nbsp;Etienne Thévenot,&nbsp;Isabelle Schmitz,&nbsp;Sylvain Chéreau,&nbsp;Sylvain Dechaumet,&nbsp;Binta Diémé,&nbsp;Franck Giacomoni,&nbsp;Gildas Le Corguillé,&nbsp;Mélanie Pétéra,&nbsp;Florence Souard\",\"doi\":\"10.1002/cpz1.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various spectrometric methods can be used to conduct metabolomics studies. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) coupled with separation methods, such as liquid or gas chromatography (LC and GC, respectively), are the most commonly used techniques. Once the raw data have been obtained, the real challenge lies in the bioinformatics required to conduct: (i) data processing (including preprocessing, normalization, and quality control); (ii) statistical analysis for comparative studies (such as univariate and multivariate analyses, including PCA or PLS-DA/OPLS-DA); (iii) annotation of the metabolites of interest; and (iv) interpretation of the relationships between key metabolites and the relevant phenotypes or scientific questions to be addressed. Here, we will introduce and detail a stepwise protocol for use of the Workflow4Metabolomics platform (W4M), which provides user-friendly access to workflows for processing of LC–MS, GC–MS, and NMR data. Those modular and extensible workflows are composed of existing standalone components (e.g., XCMS and CAMERA packages) as well as a suite of complementary W4M-implemented modules. This tool suite is accessible worldwide through a web interface and is hosted on UseGalaxy France. The extensible Virtual Research Environment (VRE) provided offers pre-configured workflows for metabolomics communities (platforms, end users, etc.), as well as possibilities for sharing among users. By providing a consistent ecosystem of tools and workflows through Galaxy, W4M makes it possible to process MS and NMR data from hundreds of samples using an ordinary personal computer, after step-by-step workflow optimization. © 2025 Wiley Periodicals LLC.</p><p><b>Basic Protocol 1</b>: W4M account creation, working history preparation, and data upload</p><p><b>Support Protocol 1</b>: How to prepare an NMR zip file</p><p><b>Support Protocol 2</b>: How to convert MS data from proprietary format to open format</p><p><b>Support Protocol 3</b>: How to get help with W4M (IFB forum) and how to report a problem on the GitHub repository</p><p><b>Basic Protocol 2</b>: LC–MS data processing</p><p><b>Alternate Protocol 1</b>: GC–MS data processing</p><p><b>Alternate Protocol 2</b>: NMR data processing</p><p><b>Basic Protocol 3</b>: Statistical analysis</p><p><b>Basic Protocol 4</b>: Annotation of metabolites from LC–MS data</p><p><b>Alternate Protocol 3</b>: Annotation of metabolites from NMR data</p>\",\"PeriodicalId\":93970,\"journal\":{\"name\":\"Current protocols\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpz1.70095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各种光谱方法可用于进行代谢组学研究。核磁共振(NMR)或质谱(MS)结合分离方法,如液体或气相色谱(分别为LC和GC),是最常用的技术。一旦获得原始数据,真正的挑战在于进行所需的生物信息学:(i)数据处理(包括预处理、规范化和质量控制);(ii)用于比较研究的统计分析(例如单变量和多变量分析,包括PCA或PLS-DA/OPLS-DA);(iii)对感兴趣的代谢物进行标注;(iv)解释关键代谢物与相关表型或有待解决的科学问题之间的关系。在这里,我们将介绍并详细介绍使用Workflow4Metabolomics平台(W4M)的逐步协议,该平台为LC-MS、GC-MS和NMR数据的处理提供了用户友好的工作流访问。这些模块化和可扩展的工作流由现有的独立组件(例如,XCMS和CAMERA包)以及一套互补的w4m实现模块组成。该工具套件可通过web界面在全球范围内访问,并托管在UseGalaxy France上。可扩展的虚拟研究环境(VRE)为代谢组学社区(平台,最终用户等)提供了预配置的工作流程,以及用户之间共享的可能性。通过Galaxy提供一致的工具和工作流程生态系统,W4M使使用普通个人电脑处理数百个样品的MS和NMR数据成为可能,经过一步一步的工作流程优化。©2025 Wiley期刊有限责任公司基本协议1:W4M帐户创建,工作历史准备和数据上传支持协议1:如何准备NMR zip文件支持协议2:如何将MS数据从专有格式转换为开放格式支持协议3:如何获得W4M (IFB论坛)的帮助以及如何在GitHub存储库上报告问题基本协议2:LC-MS数据处理备用协议1:GC-MS数据处理备用协议2:核磁共振数据处理基本方案3:统计分析基本方案4:从LC-MS数据中标注代谢物备用方案3:从核磁共振数据中标注代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Workflow4Metabolomics (W4M): A User-Friendly Metabolomics Platform for Analysis of Mass Spectrometry and Nuclear Magnetic Resonance Data

Various spectrometric methods can be used to conduct metabolomics studies. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) coupled with separation methods, such as liquid or gas chromatography (LC and GC, respectively), are the most commonly used techniques. Once the raw data have been obtained, the real challenge lies in the bioinformatics required to conduct: (i) data processing (including preprocessing, normalization, and quality control); (ii) statistical analysis for comparative studies (such as univariate and multivariate analyses, including PCA or PLS-DA/OPLS-DA); (iii) annotation of the metabolites of interest; and (iv) interpretation of the relationships between key metabolites and the relevant phenotypes or scientific questions to be addressed. Here, we will introduce and detail a stepwise protocol for use of the Workflow4Metabolomics platform (W4M), which provides user-friendly access to workflows for processing of LC–MS, GC–MS, and NMR data. Those modular and extensible workflows are composed of existing standalone components (e.g., XCMS and CAMERA packages) as well as a suite of complementary W4M-implemented modules. This tool suite is accessible worldwide through a web interface and is hosted on UseGalaxy France. The extensible Virtual Research Environment (VRE) provided offers pre-configured workflows for metabolomics communities (platforms, end users, etc.), as well as possibilities for sharing among users. By providing a consistent ecosystem of tools and workflows through Galaxy, W4M makes it possible to process MS and NMR data from hundreds of samples using an ordinary personal computer, after step-by-step workflow optimization. © 2025 Wiley Periodicals LLC.

Basic Protocol 1: W4M account creation, working history preparation, and data upload

Support Protocol 1: How to prepare an NMR zip file

Support Protocol 2: How to convert MS data from proprietary format to open format

Support Protocol 3: How to get help with W4M (IFB forum) and how to report a problem on the GitHub repository

Basic Protocol 2: LC–MS data processing

Alternate Protocol 1: GC–MS data processing

Alternate Protocol 2: NMR data processing

Basic Protocol 3: Statistical analysis

Basic Protocol 4: Annotation of metabolites from LC–MS data

Alternate Protocol 3: Annotation of metabolites from NMR data

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信