{"title":"设计抗SARS-CoV-2刺突糖蛋白多表位疫苗的B细胞和t细胞表位的计算鉴定","authors":"Truc Ly Nguyen , Thong Ba Nguyen , Heebal Kim","doi":"10.1016/j.jsb.2025.108177","DOIUrl":null,"url":null,"abstract":"<div><div>Although the peak of the COVID-19 pandemic has passed, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global threat and remains a public health concern. Given the ongoing risk and the substantial loss of life caused by the virus, continuous research into vaccine development is essential. This study employs immunoinformatics approaches to identify T-cell and B-cell epitopes for designing a multi-epitope peptide vaccine candidate targeting the Omicron variant. The proposed vaccine construct comprises 1435 amino acids, including eight linear B lymphocyte, seven cytotoxic T lymphocyte, and five helper T lymphocyte epitopes, along with appropriate adjuvants and linkers. The evaluation of the vaccine revealed high antigenicity, non-allergenicity, non-toxicity, and favorable physicochemical properties. To further assess its efficacy, molecular docking studies were performed to investigate interactions between the vaccine and key immune components, including Toll-like receptors and major histocompatibility complex molecules. Stability of these interactions was confirmed using molecular dynamics simulations in triplicate, conducted over 100 ns using GROMACS 2023 to compute key metrics, such as root mean square deviation, root mean square fluctuation, solvent-accessible surface area, and radius of gyration. The results demonstrate that the multi-epitope vaccine has the potential to elicit strong immune responses against the Omicron variant, providing a promising foundation for further experimental validation and clinical development in COVID-19 vaccine research.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108177"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational identification of B and T-cell epitopes for designing a multi-epitope vaccine against SARS-CoV-2 spike glycoprotein\",\"authors\":\"Truc Ly Nguyen , Thong Ba Nguyen , Heebal Kim\",\"doi\":\"10.1016/j.jsb.2025.108177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the peak of the COVID-19 pandemic has passed, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global threat and remains a public health concern. Given the ongoing risk and the substantial loss of life caused by the virus, continuous research into vaccine development is essential. This study employs immunoinformatics approaches to identify T-cell and B-cell epitopes for designing a multi-epitope peptide vaccine candidate targeting the Omicron variant. The proposed vaccine construct comprises 1435 amino acids, including eight linear B lymphocyte, seven cytotoxic T lymphocyte, and five helper T lymphocyte epitopes, along with appropriate adjuvants and linkers. The evaluation of the vaccine revealed high antigenicity, non-allergenicity, non-toxicity, and favorable physicochemical properties. To further assess its efficacy, molecular docking studies were performed to investigate interactions between the vaccine and key immune components, including Toll-like receptors and major histocompatibility complex molecules. Stability of these interactions was confirmed using molecular dynamics simulations in triplicate, conducted over 100 ns using GROMACS 2023 to compute key metrics, such as root mean square deviation, root mean square fluctuation, solvent-accessible surface area, and radius of gyration. The results demonstrate that the multi-epitope vaccine has the potential to elicit strong immune responses against the Omicron variant, providing a promising foundation for further experimental validation and clinical development in COVID-19 vaccine research.</div></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":\"217 2\",\"pages\":\"Article 108177\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847725000127\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000127","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational identification of B and T-cell epitopes for designing a multi-epitope vaccine against SARS-CoV-2 spike glycoprotein
Although the peak of the COVID-19 pandemic has passed, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global threat and remains a public health concern. Given the ongoing risk and the substantial loss of life caused by the virus, continuous research into vaccine development is essential. This study employs immunoinformatics approaches to identify T-cell and B-cell epitopes for designing a multi-epitope peptide vaccine candidate targeting the Omicron variant. The proposed vaccine construct comprises 1435 amino acids, including eight linear B lymphocyte, seven cytotoxic T lymphocyte, and five helper T lymphocyte epitopes, along with appropriate adjuvants and linkers. The evaluation of the vaccine revealed high antigenicity, non-allergenicity, non-toxicity, and favorable physicochemical properties. To further assess its efficacy, molecular docking studies were performed to investigate interactions between the vaccine and key immune components, including Toll-like receptors and major histocompatibility complex molecules. Stability of these interactions was confirmed using molecular dynamics simulations in triplicate, conducted over 100 ns using GROMACS 2023 to compute key metrics, such as root mean square deviation, root mean square fluctuation, solvent-accessible surface area, and radius of gyration. The results demonstrate that the multi-epitope vaccine has the potential to elicit strong immune responses against the Omicron variant, providing a promising foundation for further experimental validation and clinical development in COVID-19 vaccine research.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure