Eric Boilard, Dylan Burger, Edit Buzas, Paolo Gresele, Kellie R Machlus, Nigel Mackman, Pia Siljander, Rienk Nieuwland
{"title":"解读血小板:它们是细胞还是细胞外囊泡的进化形式?","authors":"Eric Boilard, Dylan Burger, Edit Buzas, Paolo Gresele, Kellie R Machlus, Nigel Mackman, Pia Siljander, Rienk Nieuwland","doi":"10.1161/CIRCRESAHA.124.324721","DOIUrl":null,"url":null,"abstract":"<p><p>Platelets are abundant in blood, where they maintain the integrity of the vasculature. Megakaryocytes, the cells responsible for platelet genesis, produce membrane protrusions from which as many as 5000 anucleate platelets can be released into the bloodstream. Platelets lack genomic DNA but contain different molecules, such as RNA, as well as organelles transmitted from the parent megakaryocyte. There is no consensus in the scientific community on whether platelets are cells or not: for example, they are sometimes called cells, small cells, anucleated cells, cell fragments, or megakaryocyte fragments. Extracellular vesicles are particles delimited by a lipid bilayer that are released from cells but cannot replicate on their own. Like platelets, extracellular vesicles lack a nucleus and carry components from their donor cell. Herein, we will explore various viewpoints suggesting that platelets may be cells, albeit not conventional cells, or may be a previously unrecognized type of extracellular vesicle. Beyond a mere debate over terminology, this perspective seeks to help properly define and classify platelets, aiming for better integration into the concept of either cells or extracellular vesicles. This will foster a clearer understanding and drive advances in platelet research.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"136 4","pages":"442-452"},"PeriodicalIF":16.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839173/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deciphering Platelets: Are They Cells or an Evolved Form of Extracellular Vesicles?\",\"authors\":\"Eric Boilard, Dylan Burger, Edit Buzas, Paolo Gresele, Kellie R Machlus, Nigel Mackman, Pia Siljander, Rienk Nieuwland\",\"doi\":\"10.1161/CIRCRESAHA.124.324721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Platelets are abundant in blood, where they maintain the integrity of the vasculature. Megakaryocytes, the cells responsible for platelet genesis, produce membrane protrusions from which as many as 5000 anucleate platelets can be released into the bloodstream. Platelets lack genomic DNA but contain different molecules, such as RNA, as well as organelles transmitted from the parent megakaryocyte. There is no consensus in the scientific community on whether platelets are cells or not: for example, they are sometimes called cells, small cells, anucleated cells, cell fragments, or megakaryocyte fragments. Extracellular vesicles are particles delimited by a lipid bilayer that are released from cells but cannot replicate on their own. Like platelets, extracellular vesicles lack a nucleus and carry components from their donor cell. Herein, we will explore various viewpoints suggesting that platelets may be cells, albeit not conventional cells, or may be a previously unrecognized type of extracellular vesicle. Beyond a mere debate over terminology, this perspective seeks to help properly define and classify platelets, aiming for better integration into the concept of either cells or extracellular vesicles. This will foster a clearer understanding and drive advances in platelet research.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":\"136 4\",\"pages\":\"442-452\"},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839173/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.324721\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324721","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Deciphering Platelets: Are They Cells or an Evolved Form of Extracellular Vesicles?
Platelets are abundant in blood, where they maintain the integrity of the vasculature. Megakaryocytes, the cells responsible for platelet genesis, produce membrane protrusions from which as many as 5000 anucleate platelets can be released into the bloodstream. Platelets lack genomic DNA but contain different molecules, such as RNA, as well as organelles transmitted from the parent megakaryocyte. There is no consensus in the scientific community on whether platelets are cells or not: for example, they are sometimes called cells, small cells, anucleated cells, cell fragments, or megakaryocyte fragments. Extracellular vesicles are particles delimited by a lipid bilayer that are released from cells but cannot replicate on their own. Like platelets, extracellular vesicles lack a nucleus and carry components from their donor cell. Herein, we will explore various viewpoints suggesting that platelets may be cells, albeit not conventional cells, or may be a previously unrecognized type of extracellular vesicle. Beyond a mere debate over terminology, this perspective seeks to help properly define and classify platelets, aiming for better integration into the concept of either cells or extracellular vesicles. This will foster a clearer understanding and drive advances in platelet research.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.