与chrne相关的先天性肌无力综合征患者的血液生物标志物指纹。

IF 6.2 2区 医学 Q1 NEUROSCIENCES
Adela Della Marina, Andrie Koutsoulidou, Daniel Natera-de Benito, Lars-Oliver Tykocinski, Marios Tomazou, Kristia Georgiou, Andreas Laner, Heike Kölbel, Andres Nascimento, Carlos Ortez, Angela Abicht, Basant Kumar Thakur, Hanns Lochmüller, Leonidas A Phylactou, Tobias Ruck, Ulrike Schara-Schmidt, Dipali Kale, Andreas Hentschel, Andreas Roos
{"title":"与chrne相关的先天性肌无力综合征患者的血液生物标志物指纹。","authors":"Adela Della Marina, Andrie Koutsoulidou, Daniel Natera-de Benito, Lars-Oliver Tykocinski, Marios Tomazou, Kristia Georgiou, Andreas Laner, Heike Kölbel, Andres Nascimento, Carlos Ortez, Angela Abicht, Basant Kumar Thakur, Hanns Lochmüller, Leonidas A Phylactou, Tobias Ruck, Ulrike Schara-Schmidt, Dipali Kale, Andreas Hentschel, Andreas Roos","doi":"10.1186/s40478-025-01946-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.8 years) from 13 families which were clinically characterized according to disease severity. 15 patients were classified as mildly and 4 patients as moderate to severely affected. Seven known pathogenic and one unreported variant (c.1032 + 2_1032 + 3delinsGT) were identified. Biomarker discovery was carried out on blood samples: proteomics was performed on white blood cells (WBC; n = 12) and on extracellular vesicles (EV) purified from serum samples (n = 7) in addition to amino acid profiling (n = 9) and miRNA screening (n = 18). For miRNA studies, 7 patients with other CMS-subtypes were moreover included. WBC-proteomics unveiled a significant increase of 7 and a decrease of 36 proteins. In silico studies of these proteins indicated affection of secretory granules and the extracellular space. Comparison across patients unveiled increase of two vesicular transport proteins (SCAMP2 and SNX2) in severely affected patients and indeed EV-proteomics revealed increase of 7 and decrease of 13 proteins. Three of these proteins (TARSH, ATRN & PLEC) are known to be important for synaptogenesis and synaptic function. Metabolomics showed decrease of seven amino acids/ amino acid metabolites (aspartic and glutamic acids, phosphoserine, amino adipate, citrulline, ornithine, and 1-methyhistidine). miRNA-profiling showed increase miR - 483 - 3p, miR-365a-3p, miR - 365b - 3p and miR-99a, and decrease of miR-4433b-3p, miR-6873-3p, miR-182-5p and let-7b-5p in CHRNE-patients whereas a comparison with other CMS subtypes showed increase of miR - 205 - 5p, miR - 10b - 5p, miR-125a-5p, miR-499-5p, miR-3120-5p and miR - 483 - 5p and decrease of miR - 1290. Our combined data introduce a molecular fingerprint on protein, metabolic and miRNA level with some of those playing different roles along the neuromuscular axis.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"29"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Blood biomarker fingerprints in a cohort of patients with CHRNE-related congenital myasthenic syndrome.\",\"authors\":\"Adela Della Marina, Andrie Koutsoulidou, Daniel Natera-de Benito, Lars-Oliver Tykocinski, Marios Tomazou, Kristia Georgiou, Andreas Laner, Heike Kölbel, Andres Nascimento, Carlos Ortez, Angela Abicht, Basant Kumar Thakur, Hanns Lochmüller, Leonidas A Phylactou, Tobias Ruck, Ulrike Schara-Schmidt, Dipali Kale, Andreas Hentschel, Andreas Roos\",\"doi\":\"10.1186/s40478-025-01946-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.8 years) from 13 families which were clinically characterized according to disease severity. 15 patients were classified as mildly and 4 patients as moderate to severely affected. Seven known pathogenic and one unreported variant (c.1032 + 2_1032 + 3delinsGT) were identified. Biomarker discovery was carried out on blood samples: proteomics was performed on white blood cells (WBC; n = 12) and on extracellular vesicles (EV) purified from serum samples (n = 7) in addition to amino acid profiling (n = 9) and miRNA screening (n = 18). For miRNA studies, 7 patients with other CMS-subtypes were moreover included. WBC-proteomics unveiled a significant increase of 7 and a decrease of 36 proteins. In silico studies of these proteins indicated affection of secretory granules and the extracellular space. Comparison across patients unveiled increase of two vesicular transport proteins (SCAMP2 and SNX2) in severely affected patients and indeed EV-proteomics revealed increase of 7 and decrease of 13 proteins. Three of these proteins (TARSH, ATRN & PLEC) are known to be important for synaptogenesis and synaptic function. Metabolomics showed decrease of seven amino acids/ amino acid metabolites (aspartic and glutamic acids, phosphoserine, amino adipate, citrulline, ornithine, and 1-methyhistidine). miRNA-profiling showed increase miR - 483 - 3p, miR-365a-3p, miR - 365b - 3p and miR-99a, and decrease of miR-4433b-3p, miR-6873-3p, miR-182-5p and let-7b-5p in CHRNE-patients whereas a comparison with other CMS subtypes showed increase of miR - 205 - 5p, miR - 10b - 5p, miR-125a-5p, miR-499-5p, miR-3120-5p and miR - 483 - 5p and decrease of miR - 1290. Our combined data introduce a molecular fingerprint on protein, metabolic and miRNA level with some of those playing different roles along the neuromuscular axis.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"29\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-025-01946-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-01946-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

编码乙酰胆碱受体epsilon亚基的CHRNE突变可导致神经肌肉传递受损和症状严重程度不同的先天性肌无力综合征(CMS)。虽然病理生理学是众所周知的,但血液生物标志物特征使患者分层是缺乏的。本回顾性双中心研究纳入了19例隐性chrne患者(AChR缺乏症;平均年龄14.8岁,来自13个家庭,根据疾病严重程度有临床特征。15例为轻度,4例为中度至重度。鉴定出7个已知致病性变异和1个未报告的变异(c.1032 + 2_1032 + 3delinsGT)。对血液样本进行生物标志物发现:对白细胞(WBC)进行蛋白质组学;n = 12),以及从血清样本中纯化的细胞外囊泡(EV) (n = 7),此外还有氨基酸谱分析(n = 9)和miRNA筛选(n = 18)。在miRNA研究中,还纳入了7例其他cms亚型患者。wbc -蛋白质组学显示7个蛋白显著增加,36个蛋白显著减少。这些蛋白质的计算机研究表明,分泌颗粒和细胞外空间的影响。患者间比较发现严重感染患者的两种囊泡转运蛋白(SCAMP2和SNX2)增加,实际上ev蛋白质组学显示7种蛋白增加,13种蛋白减少。其中三种蛋白(TARSH, ATRN和PLEC)已知对突触发生和突触功能很重要。代谢组学显示7种氨基酸/氨基酸代谢物(天冬氨酸和谷氨酸、磷酸丝氨酸、氨基己二酸、瓜氨酸、鸟氨酸和1-甲基组氨酸)减少。mirna分析显示,chrne患者miR- 483 -3p、miR-365a-3p、miR- 365b -3p和miR-99a升高,miR-4433b-3p、miR-6873-3p、miR-182-5p和let-7b-5p降低,而与其他CMS亚型相比,miR- 205 -5p、miR- 10b -5p、miR-125a-5p、miR-499-5p、miR-3120-5p和miR- 483 -5p升高,miR- 1290降低。我们的综合数据介绍了蛋白质,代谢和miRNA水平的分子指纹,其中一些沿着神经肌肉轴发挥不同的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blood biomarker fingerprints in a cohort of patients with CHRNE-related congenital myasthenic syndrome.

Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.8 years) from 13 families which were clinically characterized according to disease severity. 15 patients were classified as mildly and 4 patients as moderate to severely affected. Seven known pathogenic and one unreported variant (c.1032 + 2_1032 + 3delinsGT) were identified. Biomarker discovery was carried out on blood samples: proteomics was performed on white blood cells (WBC; n = 12) and on extracellular vesicles (EV) purified from serum samples (n = 7) in addition to amino acid profiling (n = 9) and miRNA screening (n = 18). For miRNA studies, 7 patients with other CMS-subtypes were moreover included. WBC-proteomics unveiled a significant increase of 7 and a decrease of 36 proteins. In silico studies of these proteins indicated affection of secretory granules and the extracellular space. Comparison across patients unveiled increase of two vesicular transport proteins (SCAMP2 and SNX2) in severely affected patients and indeed EV-proteomics revealed increase of 7 and decrease of 13 proteins. Three of these proteins (TARSH, ATRN & PLEC) are known to be important for synaptogenesis and synaptic function. Metabolomics showed decrease of seven amino acids/ amino acid metabolites (aspartic and glutamic acids, phosphoserine, amino adipate, citrulline, ornithine, and 1-methyhistidine). miRNA-profiling showed increase miR - 483 - 3p, miR-365a-3p, miR - 365b - 3p and miR-99a, and decrease of miR-4433b-3p, miR-6873-3p, miR-182-5p and let-7b-5p in CHRNE-patients whereas a comparison with other CMS subtypes showed increase of miR - 205 - 5p, miR - 10b - 5p, miR-125a-5p, miR-499-5p, miR-3120-5p and miR - 483 - 5p and decrease of miR - 1290. Our combined data introduce a molecular fingerprint on protein, metabolic and miRNA level with some of those playing different roles along the neuromuscular axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Neuropathologica Communications
Acta Neuropathologica Communications Medicine-Pathology and Forensic Medicine
CiteScore
11.20
自引率
2.80%
发文量
162
审稿时长
8 weeks
期刊介绍: "Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders. ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信