{"title":"金属掺杂激活催化反应中阴离子介导的电子转移。","authors":"Chao Yue Zhang, Jing Yu, Chen Huang, Guowen Sun, Lluís Balcells, Jiayue Li, Xuede Qi, Cheng Zhu Yi, Javier Herrero-Martín, Laura Simonelli, Francois Fauth, Ren He, Xiaobo Pan, Junshan Li, Jordi Arbiol, Jin Yuan Zhou, Andreu Cabot","doi":"10.1021/jacs.4c18236","DOIUrl":null,"url":null,"abstract":"<p><p>Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as <i>d</i>-band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants. In this study, we synthesize various heteroatom-doped catalysts to explore the correlation between the electronic effects of the dopants and catalyst activity. Using Co-MoS<sub>2</sub> as a model catalyst and the Li-S redox reaction within the cathode of Li-S batteries as a test system, we show the interaction between cobalt sites and adjacent lattice sulfur atoms disrupts the intrinsic structural and electronic symmetry of MoS<sub>2</sub>. This disruption enhances the transfer of spin-polarized electrons from metal centers to lattice sulfur and promotes the adsorption of reactant intermediates. Furthermore, by analyzing 20 different dopant elements, we establish a linear relationship between the electron density in the lattice sulfur and catalyst activity toward the reduction of sulfur species, a relationship that extends to other catalytic systems, such as the hydrogen evolution reaction.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal Doping Activation of Anion-Mediated Electron Transfer in Catalytic Reactions.\",\"authors\":\"Chao Yue Zhang, Jing Yu, Chen Huang, Guowen Sun, Lluís Balcells, Jiayue Li, Xuede Qi, Cheng Zhu Yi, Javier Herrero-Martín, Laura Simonelli, Francois Fauth, Ren He, Xiaobo Pan, Junshan Li, Jordi Arbiol, Jin Yuan Zhou, Andreu Cabot\",\"doi\":\"10.1021/jacs.4c18236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as <i>d</i>-band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants. In this study, we synthesize various heteroatom-doped catalysts to explore the correlation between the electronic effects of the dopants and catalyst activity. Using Co-MoS<sub>2</sub> as a model catalyst and the Li-S redox reaction within the cathode of Li-S batteries as a test system, we show the interaction between cobalt sites and adjacent lattice sulfur atoms disrupts the intrinsic structural and electronic symmetry of MoS<sub>2</sub>. This disruption enhances the transfer of spin-polarized electrons from metal centers to lattice sulfur and promotes the adsorption of reactant intermediates. Furthermore, by analyzing 20 different dopant elements, we establish a linear relationship between the electron density in the lattice sulfur and catalyst activity toward the reduction of sulfur species, a relationship that extends to other catalytic systems, such as the hydrogen evolution reaction.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c18236\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18236","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metal Doping Activation of Anion-Mediated Electron Transfer in Catalytic Reactions.
Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as d-band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants. In this study, we synthesize various heteroatom-doped catalysts to explore the correlation between the electronic effects of the dopants and catalyst activity. Using Co-MoS2 as a model catalyst and the Li-S redox reaction within the cathode of Li-S batteries as a test system, we show the interaction between cobalt sites and adjacent lattice sulfur atoms disrupts the intrinsic structural and electronic symmetry of MoS2. This disruption enhances the transfer of spin-polarized electrons from metal centers to lattice sulfur and promotes the adsorption of reactant intermediates. Furthermore, by analyzing 20 different dopant elements, we establish a linear relationship between the electron density in the lattice sulfur and catalyst activity toward the reduction of sulfur species, a relationship that extends to other catalytic systems, such as the hydrogen evolution reaction.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.