等周等径不等式及拉普拉斯函数特征值的最小化。

IF 1.5 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2025-01-01 Epub Date: 2025-01-04 DOI:10.1007/s12220-024-01887-0
Sam Farrington
{"title":"等周等径不等式及拉普拉斯函数特征值的最小化。","authors":"Sam Farrington","doi":"10.1007/s12220-024-01887-0","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the problem of minimising the <i>k</i>-th eigenvalue of the Laplacian with some prescribed boundary condition over collections of convex domains of prescribed perimeter or diameter. It is known that these minimisation problems are well-posed for Dirichlet eigenvalues in any dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> and any sequence of minimisers converges to the ball of unit perimeter or diameter respectively as <math><mrow><mi>k</mi> <mo>→</mo> <mo>+</mo> <mi>∞</mi></mrow> </math> . In this paper, we show that the same is true in the case of Neumann eigenvalues under diameter constraint in any dimension and under perimeter constraint in dimension <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . We also consider these problems for Robin eigenvalues and mixed Dirichlet-Neumann eigenvalues, under an additional geometric constraint.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"35 2","pages":"62"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811466/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.\",\"authors\":\"Sam Farrington\",\"doi\":\"10.1007/s12220-024-01887-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the problem of minimising the <i>k</i>-th eigenvalue of the Laplacian with some prescribed boundary condition over collections of convex domains of prescribed perimeter or diameter. It is known that these minimisation problems are well-posed for Dirichlet eigenvalues in any dimension <math><mrow><mi>d</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> and any sequence of minimisers converges to the ball of unit perimeter or diameter respectively as <math><mrow><mi>k</mi> <mo>→</mo> <mo>+</mo> <mi>∞</mi></mrow> </math> . In this paper, we show that the same is true in the case of Neumann eigenvalues under diameter constraint in any dimension and under perimeter constraint in dimension <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> . We also consider these problems for Robin eigenvalues and mixed Dirichlet-Neumann eigenvalues, under an additional geometric constraint.</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":\"35 2\",\"pages\":\"62\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01887-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-024-01887-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在给定周长或直径的凸域集合上具有某些规定边界条件的拉普拉斯算子的第k个特征值的最小化问题。已知这些最小化问题对于任意维数d≥2的Dirichlet特征值都是适定的,并且最小化序列分别收敛于k→+∞时的单位周长球或单位直径球。本文证明了在任意维数的直径约束和d = 2维数的周长约束下的诺伊曼特征值也是如此。在附加的几何约束下,我们还考虑了Robin特征值和混合Dirichlet-Neumann特征值的这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.

On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.

On the Isoperimetric and Isodiametric Inequalities and the Minimisation of Eigenvalues of the Laplacian.

We consider the problem of minimising the k-th eigenvalue of the Laplacian with some prescribed boundary condition over collections of convex domains of prescribed perimeter or diameter. It is known that these minimisation problems are well-posed for Dirichlet eigenvalues in any dimension d 2 and any sequence of minimisers converges to the ball of unit perimeter or diameter respectively as k + . In this paper, we show that the same is true in the case of Neumann eigenvalues under diameter constraint in any dimension and under perimeter constraint in dimension d = 2 . We also consider these problems for Robin eigenvalues and mixed Dirichlet-Neumann eigenvalues, under an additional geometric constraint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信