在肥胖症中,删除脂肪 FXR 会加剧代谢缺陷并诱导内源性大麻脂质--2-油酰基甘油。

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Lipid Research Pub Date : 2025-03-01 Epub Date: 2025-02-10 DOI:10.1016/j.jlr.2025.100754
Weinan Zhou, Sarith R Bandara, Kyungwon Ko, Oludemilade Akinrotimi, Diego Hernández-Saavedra, Emily Richter, Noah Brauer, Taylor J Woodward, Heather B Bradshaw, Cecilia Leal, Sayeepriyadarshini Anakk
{"title":"在肥胖症中,删除脂肪 FXR 会加剧代谢缺陷并诱导内源性大麻脂质--2-油酰基甘油。","authors":"Weinan Zhou, Sarith R Bandara, Kyungwon Ko, Oludemilade Akinrotimi, Diego Hernández-Saavedra, Emily Richter, Noah Brauer, Taylor J Woodward, Heather B Bradshaw, Cecilia Leal, Sayeepriyadarshini Anakk","doi":"10.1016/j.jlr.2025.100754","DOIUrl":null,"url":null,"abstract":"<p><p>The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice. Moreover, upon HFD challenge, these effects are worsened in adipocyte-specific Fxr knockout mice. We uncover that FXR regulates fatty acid amide hydrolase (Faah) such that its deletion lowers Faah expression. Conversely, FXR activation by its ligand, chenodeoxycholic acid, induces Faah transcription. Notably, HFD results in the reduction of adipose Faah expression in control mice and that Faah inhibition or deletion is linked to obesity. We report that the adipocyte FXR-Faah axis controls local 2-oleoyl glycerol and systemic N-acyl ethanolamine levels. Taken together, these findings show that loss of adipose FXR may contribute to the pathogenesis of obesity and subsequent metabolic defects.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100754"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deleting adipose FXR exacerbates metabolic defects and induces endocannabinoid lipid, 2-oleoyl glycerol, in obesity.\",\"authors\":\"Weinan Zhou, Sarith R Bandara, Kyungwon Ko, Oludemilade Akinrotimi, Diego Hernández-Saavedra, Emily Richter, Noah Brauer, Taylor J Woodward, Heather B Bradshaw, Cecilia Leal, Sayeepriyadarshini Anakk\",\"doi\":\"10.1016/j.jlr.2025.100754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice. Moreover, upon HFD challenge, these effects are worsened in adipocyte-specific Fxr knockout mice. We uncover that FXR regulates fatty acid amide hydrolase (Faah) such that its deletion lowers Faah expression. Conversely, FXR activation by its ligand, chenodeoxycholic acid, induces Faah transcription. Notably, HFD results in the reduction of adipose Faah expression in control mice and that Faah inhibition or deletion is linked to obesity. We report that the adipocyte FXR-Faah axis controls local 2-oleoyl glycerol and systemic N-acyl ethanolamine levels. Taken together, these findings show that loss of adipose FXR may contribute to the pathogenesis of obesity and subsequent metabolic defects.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100754\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100754\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100754","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

营养传感器farnesoid X受体(FXR)转录调节全身脂质和葡萄糖稳态。一些研究考察了FXR作为治疗肥胖的一种方式,但结果相互矛盾,强调需要研究FXR的组织特异性作用。我们发现,脂肪细胞Fxr的缺失导致脂肪细胞肥大增加和几种代谢基因的抑制,这与高脂肪饮食(HFD)喂养的对照小鼠的一些变化相似。此外,在高脂肪饮食挑战下,这些影响在脂肪细胞特异性Fxr敲除(Ad-FxrKO)小鼠中恶化。我们发现FXR调节脂肪酸酰胺水解酶(Faah),因此它的缺失会降低Faah的表达。相反,FXR被其配体鹅脱氧胆酸激活,诱导Faah转录。值得注意的是,HFD导致对照小鼠脂肪Faah表达减少,Faah抑制或缺失导致肥胖。我们报道脂肪细胞FXR-Faah轴控制局部2-油基甘油和全身n -酰基乙醇胺水平,这与肥胖相关的表型有关。综上所述,这些发现表明脂肪FXR的缺失可能有助于肥胖的发病机制和随后的代谢缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deleting adipose FXR exacerbates metabolic defects and induces endocannabinoid lipid, 2-oleoyl glycerol, in obesity.

The nutrient sensor farnesoid X receptor (FXR) transcriptionally regulates whole-body lipid and glucose homeostasis. Several studies examined targeting FXR as a modality to treat obesity with varying conflicting results, emphasizing the need to study tissue-specific roles of FXR. We show that deletion of adipocyte Fxr results in increased adipocyte hypertrophy and suppression of several metabolic genes that is akin to some of the changes noted in high-fat diet (HFD)-fed control mice. Moreover, upon HFD challenge, these effects are worsened in adipocyte-specific Fxr knockout mice. We uncover that FXR regulates fatty acid amide hydrolase (Faah) such that its deletion lowers Faah expression. Conversely, FXR activation by its ligand, chenodeoxycholic acid, induces Faah transcription. Notably, HFD results in the reduction of adipose Faah expression in control mice and that Faah inhibition or deletion is linked to obesity. We report that the adipocyte FXR-Faah axis controls local 2-oleoyl glycerol and systemic N-acyl ethanolamine levels. Taken together, these findings show that loss of adipose FXR may contribute to the pathogenesis of obesity and subsequent metabolic defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信