青松素对东莨菪碱损伤大鼠海马抗氧化酶活性及抑制性回避记忆的影响。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-06-01 Epub Date: 2025-02-13 DOI:10.1007/s12035-025-04740-9
Leila Elyasi, Jessica M Rosenholm, Mehrdad Jahanshahi, Fatemeh Jesmi
{"title":"青松素对东莨菪碱损伤大鼠海马抗氧化酶活性及抑制性回避记忆的影响。","authors":"Leila Elyasi, Jessica M Rosenholm, Mehrdad Jahanshahi, Fatemeh Jesmi","doi":"10.1007/s12035-025-04740-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer disease (AD) is a common neurologic disorder, impairing memory and spatial perception. Consistent with the extensive search for its treatment, we investigated the effect of Picein on inhibitory avoidance memory, lipid peroxidation, and the activity of hippocampal antioxidant enzymes in rats. Forty adult male Wistar rats were randomized into control group (no intervention), model group (intraperitoneal injection of 3-mg/kg scopolamine), and three interventional groups (1.5-, 2.5-, and 5-mg/kg intraventricular Picein, once a day for 7 days, 24 h after scopolamine injection). After behavioral test, the rats' hippocampus was isolated for measuring oxidative stress markers, including enzymes superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant capacity (TAC). One-way ANOVA was used for comparing numeric variables among the groups using SPSS v.21. The results showed scopolamine decreased SOD, GPX, and CAT enzymes, and TAC level, and increased MDA level, compared with the control group (P < 0.001) that confirmed the scopolamine-induced AD model. The two doses of 2.5- and 5-mg/kg Picein increased latency for entering the dark room, compared to the scopolamine group (P < 0.05), making them similar to the control group. The number of entries into the dark room in the 2.5-mg/kg Picein reduced and approached the control group (P < 0.05). The 2.5-mg/kg Picein decreased MDA and increased SOD, GPX, and TAC, more than 5 mg/kg Picein, both different than scopolamine; only 2.5-mg/kg Picein had different CAT, compared to scopolamine group (P < 0.05). In conclusion, by lowering oxidative stress in the hippocampus, Picein was able to prevent the scopolamine-induced impaired learning and avoidance memory in rats.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7835-7845"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Picein on Inhibitory Avoidance Memory and Activity of Antioxidant Enzymes in Hippocampus of Male Rats with Scopolamine-Induced Injury.\",\"authors\":\"Leila Elyasi, Jessica M Rosenholm, Mehrdad Jahanshahi, Fatemeh Jesmi\",\"doi\":\"10.1007/s12035-025-04740-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer disease (AD) is a common neurologic disorder, impairing memory and spatial perception. Consistent with the extensive search for its treatment, we investigated the effect of Picein on inhibitory avoidance memory, lipid peroxidation, and the activity of hippocampal antioxidant enzymes in rats. Forty adult male Wistar rats were randomized into control group (no intervention), model group (intraperitoneal injection of 3-mg/kg scopolamine), and three interventional groups (1.5-, 2.5-, and 5-mg/kg intraventricular Picein, once a day for 7 days, 24 h after scopolamine injection). After behavioral test, the rats' hippocampus was isolated for measuring oxidative stress markers, including enzymes superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant capacity (TAC). One-way ANOVA was used for comparing numeric variables among the groups using SPSS v.21. The results showed scopolamine decreased SOD, GPX, and CAT enzymes, and TAC level, and increased MDA level, compared with the control group (P < 0.001) that confirmed the scopolamine-induced AD model. The two doses of 2.5- and 5-mg/kg Picein increased latency for entering the dark room, compared to the scopolamine group (P < 0.05), making them similar to the control group. The number of entries into the dark room in the 2.5-mg/kg Picein reduced and approached the control group (P < 0.05). The 2.5-mg/kg Picein decreased MDA and increased SOD, GPX, and TAC, more than 5 mg/kg Picein, both different than scopolamine; only 2.5-mg/kg Picein had different CAT, compared to scopolamine group (P < 0.05). In conclusion, by lowering oxidative stress in the hippocampus, Picein was able to prevent the scopolamine-induced impaired learning and avoidance memory in rats.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"7835-7845\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04740-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04740-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种常见的神经系统疾病,损害记忆和空间感知。与对其治疗的广泛研究相一致,我们研究了Picein对大鼠抑制性回避记忆、脂质过氧化和海马抗氧化酶活性的影响。将40只成年雄性Wistar大鼠随机分为对照组(不干预)、模型组(腹腔注射3 mg/kg东莨菪碱)和3个干预组(1.5、2.5、5 mg/kg脑室注射松素,每天1次,连续7 d,注射后24 h)。行为学实验结束后,分离大鼠海马,测定氧化应激标志物,包括超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GPX)、过氧化氢酶(CAT)和总抗氧化能力(TAC)。使用SPSS v.21对组间数值变量进行单因素方差分析比较。结果显示,与对照组相比,东莨菪碱降低了SOD、GPX和CAT酶,降低了TAC水平,升高了MDA水平(P . 2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Picein on Inhibitory Avoidance Memory and Activity of Antioxidant Enzymes in Hippocampus of Male Rats with Scopolamine-Induced Injury.

Alzheimer disease (AD) is a common neurologic disorder, impairing memory and spatial perception. Consistent with the extensive search for its treatment, we investigated the effect of Picein on inhibitory avoidance memory, lipid peroxidation, and the activity of hippocampal antioxidant enzymes in rats. Forty adult male Wistar rats were randomized into control group (no intervention), model group (intraperitoneal injection of 3-mg/kg scopolamine), and three interventional groups (1.5-, 2.5-, and 5-mg/kg intraventricular Picein, once a day for 7 days, 24 h after scopolamine injection). After behavioral test, the rats' hippocampus was isolated for measuring oxidative stress markers, including enzymes superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPX), catalase (CAT), and total antioxidant capacity (TAC). One-way ANOVA was used for comparing numeric variables among the groups using SPSS v.21. The results showed scopolamine decreased SOD, GPX, and CAT enzymes, and TAC level, and increased MDA level, compared with the control group (P < 0.001) that confirmed the scopolamine-induced AD model. The two doses of 2.5- and 5-mg/kg Picein increased latency for entering the dark room, compared to the scopolamine group (P < 0.05), making them similar to the control group. The number of entries into the dark room in the 2.5-mg/kg Picein reduced and approached the control group (P < 0.05). The 2.5-mg/kg Picein decreased MDA and increased SOD, GPX, and TAC, more than 5 mg/kg Picein, both different than scopolamine; only 2.5-mg/kg Picein had different CAT, compared to scopolamine group (P < 0.05). In conclusion, by lowering oxidative stress in the hippocampus, Picein was able to prevent the scopolamine-induced impaired learning and avoidance memory in rats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信