Antonio Viana do Nascimento Filho, Gauri Akolkar, Lara Susan Lima, Filipe Fernandes Stoyell-Conti, Nathalia Bernardes, Maria Claudia Irigoyen, Pawan K Singal, Kátia De Angelis, Danielle da Silva Dias
{"title":"维生素C防止阿霉素引起的骨骼肌萎缩:氧化应激的作用。","authors":"Antonio Viana do Nascimento Filho, Gauri Akolkar, Lara Susan Lima, Filipe Fernandes Stoyell-Conti, Nathalia Bernardes, Maria Claudia Irigoyen, Pawan K Singal, Kátia De Angelis, Danielle da Silva Dias","doi":"10.1139/cjpp-2024-0154","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin is known for its significant cardiotoxicity, in part due to increased oxidative stress (OS). In addition, preclinical models have shown that doxorubicin induces skeletal muscle atrophy. While vitamin C has been recognized as a valuable pharmacological intervention to mitigate cardiac toxicity, its effect on doxorubicin-induced skeletal muscle atrophy remains to be determined. Therefore, the aim of this study was to investigate the effects of vitamin C on skeletal muscle of rats exposed to doxorubicin. Indeed, doxorubicin caused a reduction in body weight and gastrocnemius muscle weight, accompanied by an increase in hydrogen peroxide, protein oxidation, and lipid peroxidation in the gastrocnemius muscle. On the other hand, vitamin C was able to prevent the loss of skeletal muscle mass as well as the increase in markers of OS. In addition, negative correlations were found between gastrocnemius muscle mass and markers of cellular damage. In conclusion, vitamin C appears to be a protective agent against doxorubicin-induced skeletal muscle atrophy and OS. This suggests its potential application as a prophylactic measure for patients undergoing doxorubicin treatment.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":"200-207"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin C protects against doxorubicin-induced skeletal muscle atrophy: role of oxidative stress.\",\"authors\":\"Antonio Viana do Nascimento Filho, Gauri Akolkar, Lara Susan Lima, Filipe Fernandes Stoyell-Conti, Nathalia Bernardes, Maria Claudia Irigoyen, Pawan K Singal, Kátia De Angelis, Danielle da Silva Dias\",\"doi\":\"10.1139/cjpp-2024-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin is known for its significant cardiotoxicity, in part due to increased oxidative stress (OS). In addition, preclinical models have shown that doxorubicin induces skeletal muscle atrophy. While vitamin C has been recognized as a valuable pharmacological intervention to mitigate cardiac toxicity, its effect on doxorubicin-induced skeletal muscle atrophy remains to be determined. Therefore, the aim of this study was to investigate the effects of vitamin C on skeletal muscle of rats exposed to doxorubicin. Indeed, doxorubicin caused a reduction in body weight and gastrocnemius muscle weight, accompanied by an increase in hydrogen peroxide, protein oxidation, and lipid peroxidation in the gastrocnemius muscle. On the other hand, vitamin C was able to prevent the loss of skeletal muscle mass as well as the increase in markers of OS. In addition, negative correlations were found between gastrocnemius muscle mass and markers of cellular damage. In conclusion, vitamin C appears to be a protective agent against doxorubicin-induced skeletal muscle atrophy and OS. This suggests its potential application as a prophylactic measure for patients undergoing doxorubicin treatment.</p>\",\"PeriodicalId\":9520,\"journal\":{\"name\":\"Canadian journal of physiology and pharmacology\",\"volume\":\" \",\"pages\":\"200-207\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of physiology and pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1139/cjpp-2024-0154\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2024-0154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Vitamin C protects against doxorubicin-induced skeletal muscle atrophy: role of oxidative stress.
Doxorubicin is known for its significant cardiotoxicity, in part due to increased oxidative stress (OS). In addition, preclinical models have shown that doxorubicin induces skeletal muscle atrophy. While vitamin C has been recognized as a valuable pharmacological intervention to mitigate cardiac toxicity, its effect on doxorubicin-induced skeletal muscle atrophy remains to be determined. Therefore, the aim of this study was to investigate the effects of vitamin C on skeletal muscle of rats exposed to doxorubicin. Indeed, doxorubicin caused a reduction in body weight and gastrocnemius muscle weight, accompanied by an increase in hydrogen peroxide, protein oxidation, and lipid peroxidation in the gastrocnemius muscle. On the other hand, vitamin C was able to prevent the loss of skeletal muscle mass as well as the increase in markers of OS. In addition, negative correlations were found between gastrocnemius muscle mass and markers of cellular damage. In conclusion, vitamin C appears to be a protective agent against doxorubicin-induced skeletal muscle atrophy and OS. This suggests its potential application as a prophylactic measure for patients undergoing doxorubicin treatment.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.