纳米塑料对脂质膜的影响,反之亦然:来自全原子分子动力学模拟的见解。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-04-03 Epub Date: 2025-02-13 DOI:10.1021/acs.jpcb.4c08361
Anderson D S Duraes, Elaine L Jiao, Wenlin Zhang
{"title":"纳米塑料对脂质膜的影响,反之亦然:来自全原子分子动力学模拟的见解。","authors":"Anderson D S Duraes, Elaine L Jiao, Wenlin Zhang","doi":"10.1021/acs.jpcb.4c08361","DOIUrl":null,"url":null,"abstract":"<p><p>We compute the potential of mean force (PMF) between semicrystalline polyethylene (PE) nanoplastics (NPLs) and model POPC and DPPC bilayers, which approximate in vivo membranes, using atomistic simulations. Our work shows that atomistic resolution is required to characterize the NPL and lipid interactions. By analyzing the PMF, we demonstrate that the mechanical properties of membranes, rather than NPL semicrystalline morphologies, govern NPL-membrane interactions. Resistance to NPL penetration arises from the elastic energy of the membrane deformation. The flexible POPC membranes resist NPL translocation, and the brittle DPPC membranes fracture under stress. Using an elastic free energy model, we approximate effective repulsions between lipid membranes and NPLs of various sizes. Our mean first-passage time analysis shows that even small, bare NPLs cannot easily penetrate brittle lipid membranes via passive diffusion, even at high concentrations. However, eco-coronas or other mechanisms, such as endocytosis, may still facilitate the cellular uptake of NPLs and MPLs. While semicrystalline morphologies do not directly impact NPL translocation, they do influence NPL behavior within lipid membranes upon translocation. Semicrystalline NPLs remain intact within lipid membranes, whereas amorphous NPLs can dissolve into the hydrophobic core and alter the elastic properties of the membrane.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"3385-3395"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Nanoplastics on Lipid Membranes and Vice Versa: Insights from All-Atom Molecular Dynamics Simulations.\",\"authors\":\"Anderson D S Duraes, Elaine L Jiao, Wenlin Zhang\",\"doi\":\"10.1021/acs.jpcb.4c08361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We compute the potential of mean force (PMF) between semicrystalline polyethylene (PE) nanoplastics (NPLs) and model POPC and DPPC bilayers, which approximate in vivo membranes, using atomistic simulations. Our work shows that atomistic resolution is required to characterize the NPL and lipid interactions. By analyzing the PMF, we demonstrate that the mechanical properties of membranes, rather than NPL semicrystalline morphologies, govern NPL-membrane interactions. Resistance to NPL penetration arises from the elastic energy of the membrane deformation. The flexible POPC membranes resist NPL translocation, and the brittle DPPC membranes fracture under stress. Using an elastic free energy model, we approximate effective repulsions between lipid membranes and NPLs of various sizes. Our mean first-passage time analysis shows that even small, bare NPLs cannot easily penetrate brittle lipid membranes via passive diffusion, even at high concentrations. However, eco-coronas or other mechanisms, such as endocytosis, may still facilitate the cellular uptake of NPLs and MPLs. While semicrystalline morphologies do not directly impact NPL translocation, they do influence NPL behavior within lipid membranes upon translocation. Semicrystalline NPLs remain intact within lipid membranes, whereas amorphous NPLs can dissolve into the hydrophobic core and alter the elastic properties of the membrane.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"3385-3395\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c08361\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08361","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们使用原子模拟计算了半晶聚乙烯(PE)纳米塑料(NPLs)和模型POPC和DPPC双层之间的平均力势(PMF),它们近似于体内膜。我们的工作表明,原子分辨率是表征NPL和脂质相互作用所必需的。通过分析PMF,我们证明了膜的力学性能,而不是NPL的半晶形态,控制着NPL-膜的相互作用。对NPL渗透的阻力来自于膜变形的弹性能。弹性POPC膜抵抗NPL易位,脆性DPPC膜在应力作用下断裂。使用弹性自由能模型,我们近似了脂质膜和不同大小的不良贷款之间的有效排斥。我们的平均首次通过时间分析表明,即使是小的、裸露的不良贷款也不能通过被动扩散轻易穿透脆性脂质膜,即使在高浓度下也是如此。然而,生态日冕或其他机制,如内吞作用,仍然可能促进NPLs和MPLs的细胞摄取。虽然半结晶形态不直接影响NPL易位,但它们确实影响易位时脂膜内NPL的行为。半结晶的不良物质在脂质膜内保持完整,而无定形的不良物质可以溶解到疏水核心并改变膜的弹性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Nanoplastics on Lipid Membranes and Vice Versa: Insights from All-Atom Molecular Dynamics Simulations.

We compute the potential of mean force (PMF) between semicrystalline polyethylene (PE) nanoplastics (NPLs) and model POPC and DPPC bilayers, which approximate in vivo membranes, using atomistic simulations. Our work shows that atomistic resolution is required to characterize the NPL and lipid interactions. By analyzing the PMF, we demonstrate that the mechanical properties of membranes, rather than NPL semicrystalline morphologies, govern NPL-membrane interactions. Resistance to NPL penetration arises from the elastic energy of the membrane deformation. The flexible POPC membranes resist NPL translocation, and the brittle DPPC membranes fracture under stress. Using an elastic free energy model, we approximate effective repulsions between lipid membranes and NPLs of various sizes. Our mean first-passage time analysis shows that even small, bare NPLs cannot easily penetrate brittle lipid membranes via passive diffusion, even at high concentrations. However, eco-coronas or other mechanisms, such as endocytosis, may still facilitate the cellular uptake of NPLs and MPLs. While semicrystalline morphologies do not directly impact NPL translocation, they do influence NPL behavior within lipid membranes upon translocation. Semicrystalline NPLs remain intact within lipid membranes, whereas amorphous NPLs can dissolve into the hydrophobic core and alter the elastic properties of the membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信