具有丰富电显微结构的完美六方海绵状NiO-NiCo2O4高效电催化尿素氧化

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2024-12-09 DOI:10.1002/cnma.202400476
Siddhant Srivastav, Mahesh Kumar Paliwal, Sumanta Kumar Meher
{"title":"具有丰富电显微结构的完美六方海绵状NiO-NiCo2O4高效电催化尿素氧化","authors":"Siddhant Srivastav,&nbsp;Mahesh Kumar Paliwal,&nbsp;Sumanta Kumar Meher","doi":"10.1002/cnma.202400476","DOIUrl":null,"url":null,"abstract":"<p>In order to design high-efficiency electrocatalysts for the development of urea oxidation reaction (UOR)-based energy conversion and storage systems, herein, a very facile and kinetically controlled material growth strategy has been strategized to prepare extremely uniform and perfectly hexagonal sponge-like NiO-NiCo<sub>2</sub>O<sub>4</sub> with high BET surface area (126 m<sup>2</sup> g<sup>−1</sup>), monomodal distribution of mesopores (~3.9 nm), hierarchical surface as well as matrix porosity, mixed-phase lattice structure, thorough atomic non-stoichiometry and multiple valency of Ni and Co (i. e. Ni<sup>2+</sup>, Ni<sup>3+</sup>, Co<sup>2+</sup> and Co<sup>3+</sup>). The potential of NiO-NiCo<sub>2</sub>O<sub>4</sub> is thoroughly explored for electrocatalytic UOR in alkaline electrolyte medium. The in-depth electrochemical analyses demonstrate rich redox reversibility, high UOR current density, very-low charge transfer and series resistance, and typical Warburg response indicative of facilitated diffusion of electrolyte ions during electrocatalytic UOR. Furthermore, the NiO-NiCo<sub>2</sub>O<sub>4</sub> requires lower overpotential for effective UOR and exhibits minimal current loss during electrocatalytic UOR for prolonged duration. Proposedly, the multiple oxidation states of Ni and Co in NiO-NiCo<sub>2</sub>O<sub>4</sub>, combined with its rich physicoelectrochemical physiognomies, offer lowly-impeded electrolyte ion intercalation-deintercalation, good electronic conductivity, higher number of accessible redox active sites, facile adsorption of urea on the electrocatalytic sites and inhibition in the blockage of active sites by side products to augment the overall UOR kinetics. The optimized approach presented in this study is poised to advance the catalyst systems for UOR, which will lead to the development of high-efficiency urea-based energy conversion and storage systems for prospective integration in contemporary electronic architectures.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfectly Hexagonal Sponge-Like NiO-NiCo2O4 with Rich Electromicrostructural Physiognomies for High-Efficiency Electrocatalytic Urea Oxidation\",\"authors\":\"Siddhant Srivastav,&nbsp;Mahesh Kumar Paliwal,&nbsp;Sumanta Kumar Meher\",\"doi\":\"10.1002/cnma.202400476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to design high-efficiency electrocatalysts for the development of urea oxidation reaction (UOR)-based energy conversion and storage systems, herein, a very facile and kinetically controlled material growth strategy has been strategized to prepare extremely uniform and perfectly hexagonal sponge-like NiO-NiCo<sub>2</sub>O<sub>4</sub> with high BET surface area (126 m<sup>2</sup> g<sup>−1</sup>), monomodal distribution of mesopores (~3.9 nm), hierarchical surface as well as matrix porosity, mixed-phase lattice structure, thorough atomic non-stoichiometry and multiple valency of Ni and Co (i. e. Ni<sup>2+</sup>, Ni<sup>3+</sup>, Co<sup>2+</sup> and Co<sup>3+</sup>). The potential of NiO-NiCo<sub>2</sub>O<sub>4</sub> is thoroughly explored for electrocatalytic UOR in alkaline electrolyte medium. The in-depth electrochemical analyses demonstrate rich redox reversibility, high UOR current density, very-low charge transfer and series resistance, and typical Warburg response indicative of facilitated diffusion of electrolyte ions during electrocatalytic UOR. Furthermore, the NiO-NiCo<sub>2</sub>O<sub>4</sub> requires lower overpotential for effective UOR and exhibits minimal current loss during electrocatalytic UOR for prolonged duration. Proposedly, the multiple oxidation states of Ni and Co in NiO-NiCo<sub>2</sub>O<sub>4</sub>, combined with its rich physicoelectrochemical physiognomies, offer lowly-impeded electrolyte ion intercalation-deintercalation, good electronic conductivity, higher number of accessible redox active sites, facile adsorption of urea on the electrocatalytic sites and inhibition in the blockage of active sites by side products to augment the overall UOR kinetics. The optimized approach presented in this study is poised to advance the catalyst systems for UOR, which will lead to the development of high-efficiency urea-based energy conversion and storage systems for prospective integration in contemporary electronic architectures.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400476\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400476","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了设计高效的电催化剂用于开发基于尿素氧化反应(UOR)的能量转换和存储系统,本文采用了一种非常简单和动力学控制的材料生长策略,制备了具有高BET表面积(126 m2 g−1)、单峰分布的介孔(~3.9 nm)、分层表面和基质孔隙度、混合相晶格结构、彻底的原子非化学计量学和Ni和Co的多价(即。Ni2+, Ni3+, Co2+和Co3+)深入探索了NiO-NiCo2O4在碱性电解质介质中电催化UOR的潜力。深入的电化学分析表明,在电催化UOR过程中,具有丰富的氧化还原可逆性、高电流密度、极低的电荷转移和串联电阻,以及典型的Warburg响应,表明电解质离子的扩散更容易。此外,NiO-NiCo2O4需要较低的过电位才能实现有效的UOR,并且在长时间的电催化UOR中表现出最小的电流损失。因此,NiO-NiCo2O4中Ni和Co的多重氧化态,加上其丰富的物理电化学形貌,提供了低阻碍的电解质离子插入-脱插,良好的电子导电性,更多可达的氧化还原活性位点,易于吸附尿素在电催化位点上,抑制副产物堵塞活性位点,从而增强了整体UOR动力学。本研究中提出的优化方法有望推动UOR催化剂系统的发展,这将导致高效的基于尿素的能量转换和存储系统的发展,用于当代电子架构的前瞻性集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perfectly Hexagonal Sponge-Like NiO-NiCo2O4 with Rich Electromicrostructural Physiognomies for High-Efficiency Electrocatalytic Urea Oxidation

Perfectly Hexagonal Sponge-Like NiO-NiCo2O4 with Rich Electromicrostructural Physiognomies for High-Efficiency Electrocatalytic Urea Oxidation

In order to design high-efficiency electrocatalysts for the development of urea oxidation reaction (UOR)-based energy conversion and storage systems, herein, a very facile and kinetically controlled material growth strategy has been strategized to prepare extremely uniform and perfectly hexagonal sponge-like NiO-NiCo2O4 with high BET surface area (126 m2 g−1), monomodal distribution of mesopores (~3.9 nm), hierarchical surface as well as matrix porosity, mixed-phase lattice structure, thorough atomic non-stoichiometry and multiple valency of Ni and Co (i. e. Ni2+, Ni3+, Co2+ and Co3+). The potential of NiO-NiCo2O4 is thoroughly explored for electrocatalytic UOR in alkaline electrolyte medium. The in-depth electrochemical analyses demonstrate rich redox reversibility, high UOR current density, very-low charge transfer and series resistance, and typical Warburg response indicative of facilitated diffusion of electrolyte ions during electrocatalytic UOR. Furthermore, the NiO-NiCo2O4 requires lower overpotential for effective UOR and exhibits minimal current loss during electrocatalytic UOR for prolonged duration. Proposedly, the multiple oxidation states of Ni and Co in NiO-NiCo2O4, combined with its rich physicoelectrochemical physiognomies, offer lowly-impeded electrolyte ion intercalation-deintercalation, good electronic conductivity, higher number of accessible redox active sites, facile adsorption of urea on the electrocatalytic sites and inhibition in the blockage of active sites by side products to augment the overall UOR kinetics. The optimized approach presented in this study is poised to advance the catalyst systems for UOR, which will lead to the development of high-efficiency urea-based energy conversion and storage systems for prospective integration in contemporary electronic architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信