{"title":"关于总平均曲率和面积约束下Willmore能量的最小化","authors":"Christian Scharrer, Alexander West","doi":"10.1007/s00205-025-02087-y","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a model for lipid bilayer cell membranes, we study the minimization of the Willmore functional in the class of oriented closed surfaces with prescribed total mean curvature, prescribed area, and prescribed genus. Adapting methods previously developed by Keller–Mondino–Rivière, Bauer–Kuwert, and Ndiaye–Schätzle, we prove the existence of smooth minimizers for a large class of constraints. Moreover, we analyze the asymptotic behaviour of the energy profile close to the unit sphere and consider the total mean curvature of axisymmetric surfaces.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02087-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Minimization of the Willmore Energy Under a Constraint on Total Mean Curvature and Area\",\"authors\":\"Christian Scharrer, Alexander West\",\"doi\":\"10.1007/s00205-025-02087-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by a model for lipid bilayer cell membranes, we study the minimization of the Willmore functional in the class of oriented closed surfaces with prescribed total mean curvature, prescribed area, and prescribed genus. Adapting methods previously developed by Keller–Mondino–Rivière, Bauer–Kuwert, and Ndiaye–Schätzle, we prove the existence of smooth minimizers for a large class of constraints. Moreover, we analyze the asymptotic behaviour of the energy profile close to the unit sphere and consider the total mean curvature of axisymmetric surfaces.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02087-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02087-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02087-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the Minimization of the Willmore Energy Under a Constraint on Total Mean Curvature and Area
Motivated by a model for lipid bilayer cell membranes, we study the minimization of the Willmore functional in the class of oriented closed surfaces with prescribed total mean curvature, prescribed area, and prescribed genus. Adapting methods previously developed by Keller–Mondino–Rivière, Bauer–Kuwert, and Ndiaye–Schätzle, we prove the existence of smooth minimizers for a large class of constraints. Moreover, we analyze the asymptotic behaviour of the energy profile close to the unit sphere and consider the total mean curvature of axisymmetric surfaces.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.