基于集中式空域控制的无人机最后一英里航路精确算法及启发式算法

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jorge Luiz Franco , Vitor Venceslau Curtis , Edson Luiz França Senne , Filipe Alves Neto Verri
{"title":"基于集中式空域控制的无人机最后一英里航路精确算法及启发式算法","authors":"Jorge Luiz Franco ,&nbsp;Vitor Venceslau Curtis ,&nbsp;Edson Luiz França Senne ,&nbsp;Filipe Alves Neto Verri","doi":"10.1016/j.cor.2025.107006","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for efficient last-mile delivery, driven by the rise of e-commerce, has intensified the need for innovative solutions to manage the complexities of urban logistics. Among the most pressing challenges are the Multi-Agent Pathfinding (MAPF) problem and collision avoidance, both of which are NP-hard and critical for the safe and efficient operation of drones. Collision avoidance is particularly challenging due to the expected high density of drones in future urban environments, making it a problem that remains largely unsolved. Traditional approaches often rely on heuristic and metaheuristic methods to manage these complexities, as large instances are beyond the reach of exact methods. Additionally, distributed relaxations to these problems can lead to suboptimal outcomes and highlights the need for a more centralized and controlled solution. This research adopts a graph-based representation of the delivery area, transforming the centralized Last-Mile Delivery Drones (LMDD) problem into a network flow optimization problem. We propose two graph-based novelty methods in LMDD, a purely exact, NP-hard Mixed Integer Linear Programming (MILP) solution that is evaluated against a heuristic. The complexity of the heuristic is bounded by <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>P</mi></math></span> represents the number of permits and <span><math><mi>K</mi></math></span> is the number of drones. In contrast, the complexity of the MILP model is approximated by <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mn>7</mn></mrow></msup><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn><mo>.</mo><mn>25</mn></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>P</mi><msqrt><mrow><mi>P</mi></mrow></msqrt></mrow></msup><mo>)</mo></mrow></mrow></math></span>, making it intractable for larger instances. The findings from simulations indicate that the graph-based heuristic effectively balances computational efficiency and operational reliability, making it a viable solution for real-world LMDD applications, where large instances and practical execution times are required. This research significantly contributes to the fields of drone logistics and transportation by providing a scalable method for optimizing LMDD paths.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"178 ","pages":"Article 107006"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exact method and a heuristic for last-mile delivery drones routing with centralized graph-based airspace control\",\"authors\":\"Jorge Luiz Franco ,&nbsp;Vitor Venceslau Curtis ,&nbsp;Edson Luiz França Senne ,&nbsp;Filipe Alves Neto Verri\",\"doi\":\"10.1016/j.cor.2025.107006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for efficient last-mile delivery, driven by the rise of e-commerce, has intensified the need for innovative solutions to manage the complexities of urban logistics. Among the most pressing challenges are the Multi-Agent Pathfinding (MAPF) problem and collision avoidance, both of which are NP-hard and critical for the safe and efficient operation of drones. Collision avoidance is particularly challenging due to the expected high density of drones in future urban environments, making it a problem that remains largely unsolved. Traditional approaches often rely on heuristic and metaheuristic methods to manage these complexities, as large instances are beyond the reach of exact methods. Additionally, distributed relaxations to these problems can lead to suboptimal outcomes and highlights the need for a more centralized and controlled solution. This research adopts a graph-based representation of the delivery area, transforming the centralized Last-Mile Delivery Drones (LMDD) problem into a network flow optimization problem. We propose two graph-based novelty methods in LMDD, a purely exact, NP-hard Mixed Integer Linear Programming (MILP) solution that is evaluated against a heuristic. The complexity of the heuristic is bounded by <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>1</mn><mo>.</mo><mn>5</mn></mrow></msup><mi>K</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>P</mi></math></span> represents the number of permits and <span><math><mi>K</mi></math></span> is the number of drones. In contrast, the complexity of the MILP model is approximated by <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>K</mi></mrow><mrow><mn>7</mn></mrow></msup><msup><mrow><mi>P</mi></mrow><mrow><mn>5</mn><mo>.</mo><mn>25</mn></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>P</mi><msqrt><mrow><mi>P</mi></mrow></msqrt></mrow></msup><mo>)</mo></mrow></mrow></math></span>, making it intractable for larger instances. The findings from simulations indicate that the graph-based heuristic effectively balances computational efficiency and operational reliability, making it a viable solution for real-world LMDD applications, where large instances and practical execution times are required. This research significantly contributes to the fields of drone logistics and transportation by providing a scalable method for optimizing LMDD paths.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"178 \",\"pages\":\"Article 107006\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054825000346\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825000346","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在电子商务兴起的推动下,对高效的最后一英里配送的需求日益增长,这加大了对创新解决方案的需求,以管理城市物流的复杂性。其中最紧迫的挑战是多智能体寻路(MAPF)问题和避碰问题,这两个问题都是NP-hard问题,对无人机的安全高效运行至关重要。由于未来城市环境中无人机的密度预计会很高,因此避免碰撞尤其具有挑战性,这是一个基本上尚未解决的问题。传统方法通常依赖启发式和元启发式方法来管理这些复杂性,因为大型实例超出了精确方法的范围。此外,对这些问题的分布式放松可能导致次优结果,并突出了对更集中和控制的解决方案的需求。本研究采用基于图的配送区域表示,将集中式最后一英里无人机配送问题转化为网络流优化问题。我们在LMDD中提出了两种基于图的新颖性方法,LMDD是一种纯精确的NP-hard混合整数线性规划(MILP)解决方案,它是根据启发式评估的。启发式算法的复杂度以O(P1.5K)为界,其中P表示许可的数量,K表示无人机的数量。相比之下,MILP模型的复杂性近似为0 (K7P5.252K2PP),使得它难以处理更大的实例。仿真结果表明,基于图的启发式方法有效地平衡了计算效率和操作可靠性,使其成为现实世界中需要大型实例和实际执行时间的ldd应用程序的可行解决方案。该研究通过提供一种可扩展的优化LMDD路径的方法,对无人机物流和运输领域做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exact method and a heuristic for last-mile delivery drones routing with centralized graph-based airspace control
The increasing demand for efficient last-mile delivery, driven by the rise of e-commerce, has intensified the need for innovative solutions to manage the complexities of urban logistics. Among the most pressing challenges are the Multi-Agent Pathfinding (MAPF) problem and collision avoidance, both of which are NP-hard and critical for the safe and efficient operation of drones. Collision avoidance is particularly challenging due to the expected high density of drones in future urban environments, making it a problem that remains largely unsolved. Traditional approaches often rely on heuristic and metaheuristic methods to manage these complexities, as large instances are beyond the reach of exact methods. Additionally, distributed relaxations to these problems can lead to suboptimal outcomes and highlights the need for a more centralized and controlled solution. This research adopts a graph-based representation of the delivery area, transforming the centralized Last-Mile Delivery Drones (LMDD) problem into a network flow optimization problem. We propose two graph-based novelty methods in LMDD, a purely exact, NP-hard Mixed Integer Linear Programming (MILP) solution that is evaluated against a heuristic. The complexity of the heuristic is bounded by O(P1.5K), where P represents the number of permits and K is the number of drones. In contrast, the complexity of the MILP model is approximated by O(K7P5.252K2PP), making it intractable for larger instances. The findings from simulations indicate that the graph-based heuristic effectively balances computational efficiency and operational reliability, making it a viable solution for real-world LMDD applications, where large instances and practical execution times are required. This research significantly contributes to the fields of drone logistics and transportation by providing a scalable method for optimizing LMDD paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信