使用新型混合集成深度学习模型推进超声图像中的乳腺癌检测

Radwan Qasrawi , Omar Daraghmeh , Suliman Thwib , Ibrahem Qdaih , Ghada Issa , Stephanny Vicuna Polo , Haneen Owienah , Diala Abu Al-Halawa , Siham Atari
{"title":"使用新型混合集成深度学习模型推进超声图像中的乳腺癌检测","authors":"Radwan Qasrawi ,&nbsp;Omar Daraghmeh ,&nbsp;Suliman Thwib ,&nbsp;Ibrahem Qdaih ,&nbsp;Ghada Issa ,&nbsp;Stephanny Vicuna Polo ,&nbsp;Haneen Owienah ,&nbsp;Diala Abu Al-Halawa ,&nbsp;Siham Atari","doi":"10.1016/j.ibmed.2025.100222","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer remains a leading cause of mortality among women globally, emphasizing the critical need for prompt and accurate detection to improve patient outcomes. This study introduces an innovative hybrid model combining ultrasound image enhancement techniques with advanced machine learning for rapid and more accurate breast cancer prognosis. The proposed model integrates Contrast Limited Adaptive Histogram Equalization (CLAHE) for image quality improvement with an Ensemble Deep Random Vector Functional Link Neural Network (edRVFL) for classification. Utilizing a dataset of 4103 high-resolution ultrasound images from the Dunya Women's Cancer Center in Palestine, categorized into normal, benign, and malignant groups, the model was trained and evaluated using a 25-fold cross-validation approach. Results demonstrate higher performance of the hybrid model compared to traditional machine learning algorithms, achieving accuracies of 96 % for benign and 98 % for malignant cases after CLAHE enhancement. To further improve lesion detection and segmentation, a new method combining YOLOv5 object detection with the MedSAM foundation model was developed, achieving a Dice Similarity Coefficient of 0.988 after CLAHE enhancement. Validation in a clinical setting on 850 cases showed promising results, with 91.4 % ± 0.021 accuracy for benign and 84 % ± 0.024 for malignant predictions compared to histopathology. The model's high accuracy and interpretability, supported by Grad-CAM analysis, demonstrate its potential for integration into clinical practice. This study advances the application of machine learning in breast cancer detection from ultrasound images, presenting a valuable tool for enabling early detection and improving prognosis for breast cancer patients.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100222"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing breast cancer detection in ultrasound images using a novel hybrid ensemble deep learning model\",\"authors\":\"Radwan Qasrawi ,&nbsp;Omar Daraghmeh ,&nbsp;Suliman Thwib ,&nbsp;Ibrahem Qdaih ,&nbsp;Ghada Issa ,&nbsp;Stephanny Vicuna Polo ,&nbsp;Haneen Owienah ,&nbsp;Diala Abu Al-Halawa ,&nbsp;Siham Atari\",\"doi\":\"10.1016/j.ibmed.2025.100222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breast cancer remains a leading cause of mortality among women globally, emphasizing the critical need for prompt and accurate detection to improve patient outcomes. This study introduces an innovative hybrid model combining ultrasound image enhancement techniques with advanced machine learning for rapid and more accurate breast cancer prognosis. The proposed model integrates Contrast Limited Adaptive Histogram Equalization (CLAHE) for image quality improvement with an Ensemble Deep Random Vector Functional Link Neural Network (edRVFL) for classification. Utilizing a dataset of 4103 high-resolution ultrasound images from the Dunya Women's Cancer Center in Palestine, categorized into normal, benign, and malignant groups, the model was trained and evaluated using a 25-fold cross-validation approach. Results demonstrate higher performance of the hybrid model compared to traditional machine learning algorithms, achieving accuracies of 96 % for benign and 98 % for malignant cases after CLAHE enhancement. To further improve lesion detection and segmentation, a new method combining YOLOv5 object detection with the MedSAM foundation model was developed, achieving a Dice Similarity Coefficient of 0.988 after CLAHE enhancement. Validation in a clinical setting on 850 cases showed promising results, with 91.4 % ± 0.021 accuracy for benign and 84 % ± 0.024 for malignant predictions compared to histopathology. The model's high accuracy and interpretability, supported by Grad-CAM analysis, demonstrate its potential for integration into clinical practice. This study advances the application of machine learning in breast cancer detection from ultrasound images, presenting a valuable tool for enabling early detection and improving prognosis for breast cancer patients.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌仍然是全球妇女死亡的主要原因,因此迫切需要及时和准确地检测,以改善患者的预后。本研究介绍了一种创新的混合模型,将超声图像增强技术与先进的机器学习相结合,用于快速和更准确的乳腺癌预后。该模型将对比度有限自适应直方图均衡化(CLAHE)与集成深度随机向量功能链接神经网络(edRVFL)相结合,用于图像质量改善。利用来自巴勒斯坦Dunya妇女癌症中心的4103张高分辨率超声图像数据集,将其分为正常、良性和恶性三组,该模型使用25倍交叉验证方法进行训练和评估。结果表明,与传统的机器学习算法相比,混合模型的性能更高,在CLAHE增强后,良性病例的准确率达到96%,恶性病例的准确率达到98%。为了进一步提高病灶的检测和分割,我们开发了一种将YOLOv5目标检测与MedSAM基础模型相结合的新方法,CLAHE增强后的Dice Similarity Coefficient达到了0.988。在850例临床验证中显示出令人鼓舞的结果,与组织病理学相比,良性预测准确率为91.4%±0.021,恶性预测准确率为84%±0.024。该模型的高准确性和可解释性,在Grad-CAM分析的支持下,证明了其整合到临床实践中的潜力。本研究推进了机器学习在乳腺癌超声图像检测中的应用,为乳腺癌患者早期发现和改善预后提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing breast cancer detection in ultrasound images using a novel hybrid ensemble deep learning model
Breast cancer remains a leading cause of mortality among women globally, emphasizing the critical need for prompt and accurate detection to improve patient outcomes. This study introduces an innovative hybrid model combining ultrasound image enhancement techniques with advanced machine learning for rapid and more accurate breast cancer prognosis. The proposed model integrates Contrast Limited Adaptive Histogram Equalization (CLAHE) for image quality improvement with an Ensemble Deep Random Vector Functional Link Neural Network (edRVFL) for classification. Utilizing a dataset of 4103 high-resolution ultrasound images from the Dunya Women's Cancer Center in Palestine, categorized into normal, benign, and malignant groups, the model was trained and evaluated using a 25-fold cross-validation approach. Results demonstrate higher performance of the hybrid model compared to traditional machine learning algorithms, achieving accuracies of 96 % for benign and 98 % for malignant cases after CLAHE enhancement. To further improve lesion detection and segmentation, a new method combining YOLOv5 object detection with the MedSAM foundation model was developed, achieving a Dice Similarity Coefficient of 0.988 after CLAHE enhancement. Validation in a clinical setting on 850 cases showed promising results, with 91.4 % ± 0.021 accuracy for benign and 84 % ± 0.024 for malignant predictions compared to histopathology. The model's high accuracy and interpretability, supported by Grad-CAM analysis, demonstrate its potential for integration into clinical practice. This study advances the application of machine learning in breast cancer detection from ultrasound images, presenting a valuable tool for enabling early detection and improving prognosis for breast cancer patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信