通过堆叠策略调制GaN/Zr2CO2异质结构的带隙和光学活性,具有良好的光电应用前景

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fakhra Ghafoor , Munawar Ali , Muhammad Aftab Rafiq , Fizza Siddique , Amjad Ali , Ali Rauf
{"title":"通过堆叠策略调制GaN/Zr2CO2异质结构的带隙和光学活性,具有良好的光电应用前景","authors":"Fakhra Ghafoor ,&nbsp;Munawar Ali ,&nbsp;Muhammad Aftab Rafiq ,&nbsp;Fizza Siddique ,&nbsp;Amjad Ali ,&nbsp;Ali Rauf","doi":"10.1016/j.commatsci.2025.113727","DOIUrl":null,"url":null,"abstract":"<div><div>ecent advances in two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, known as MXenes, have demonstrated exceptional structural, electronic, and optical properties, making them promising candidates for energy storage, electromagnetic interference shielding, and optoelectronics. In this study, the structural, electronic, and optical properties of the GaN/Zr<sub>2</sub>CO<sub>2</sub> 2D/2D heterostructure are systematically investigated across three stable stacking configurations: SSC-AA, SSC-AB, and SSC-AC. The calculations are performed using density functional theory (DFT) within the generalized gradient approximation (GGA) augmented by a Hubbard U correction (GGA+U) to accurately capture electron correlation effects. Band gaps of 0.99 eV, 1.34 eV, and 1.51 eV are obtained for SSC-AA, SSC-AB, and SSC-AC, respectively, while the negative formation energies of <span><math><mrow><mo>−</mo><mn>88</mn><mo>.</mo><mn>98</mn></mrow></math></span> meV/Å <sup>2</sup>, <span><math><mrow><mo>−</mo><mn>80</mn><mo>.</mo><mn>09</mn></mrow></math></span> meV/Å <sup>2</sup>, and <span><math><mrow><mo>−</mo><mn>92</mn><mo>.</mo><mn>24</mn></mrow></math></span> meV/Å <sup>2</sup> confirm the stability of the heterostructures. Additionaly, Bader charge analysis indicates significant interlayer charge transfer, with Ga donating <span><math><mrow><mo>+</mo><mn>1</mn><mo>.</mo><mn>39</mn><mi>e</mi></mrow></math></span> and N receiving <span><math><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>37</mn><mi>e</mi></mrow></math></span> in SSC-AC, the most stable configuration. Optical absorption peaks are observed near 2.8 eV for SSC-AC, suggesting its suitability for visible-range optoelectronic applications. The electron localization function (ELF) further highlights strong covalent bonding and efficient charge transfer facilitated by Zr–C and Ga–N orbital hybridization. These results provide detailed insights into the tunable electronic and optical properties of GaN/Zr<sub>2</sub>CO<sub>2</sub> heterostructures , emphasizing their potential in advanced nanodevices such as photodetectors, flexible electronics, and energy storage systems.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"251 ","pages":"Article 113727"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating band gap and optical activity in GaN/Zr2CO2 Heterostructure via stacking strategies for promising optoelectronic applications\",\"authors\":\"Fakhra Ghafoor ,&nbsp;Munawar Ali ,&nbsp;Muhammad Aftab Rafiq ,&nbsp;Fizza Siddique ,&nbsp;Amjad Ali ,&nbsp;Ali Rauf\",\"doi\":\"10.1016/j.commatsci.2025.113727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ecent advances in two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, known as MXenes, have demonstrated exceptional structural, electronic, and optical properties, making them promising candidates for energy storage, electromagnetic interference shielding, and optoelectronics. In this study, the structural, electronic, and optical properties of the GaN/Zr<sub>2</sub>CO<sub>2</sub> 2D/2D heterostructure are systematically investigated across three stable stacking configurations: SSC-AA, SSC-AB, and SSC-AC. The calculations are performed using density functional theory (DFT) within the generalized gradient approximation (GGA) augmented by a Hubbard U correction (GGA+U) to accurately capture electron correlation effects. Band gaps of 0.99 eV, 1.34 eV, and 1.51 eV are obtained for SSC-AA, SSC-AB, and SSC-AC, respectively, while the negative formation energies of <span><math><mrow><mo>−</mo><mn>88</mn><mo>.</mo><mn>98</mn></mrow></math></span> meV/Å <sup>2</sup>, <span><math><mrow><mo>−</mo><mn>80</mn><mo>.</mo><mn>09</mn></mrow></math></span> meV/Å <sup>2</sup>, and <span><math><mrow><mo>−</mo><mn>92</mn><mo>.</mo><mn>24</mn></mrow></math></span> meV/Å <sup>2</sup> confirm the stability of the heterostructures. Additionaly, Bader charge analysis indicates significant interlayer charge transfer, with Ga donating <span><math><mrow><mo>+</mo><mn>1</mn><mo>.</mo><mn>39</mn><mi>e</mi></mrow></math></span> and N receiving <span><math><mrow><mo>−</mo><mn>1</mn><mo>.</mo><mn>37</mn><mi>e</mi></mrow></math></span> in SSC-AC, the most stable configuration. Optical absorption peaks are observed near 2.8 eV for SSC-AC, suggesting its suitability for visible-range optoelectronic applications. The electron localization function (ELF) further highlights strong covalent bonding and efficient charge transfer facilitated by Zr–C and Ga–N orbital hybridization. These results provide detailed insights into the tunable electronic and optical properties of GaN/Zr<sub>2</sub>CO<sub>2</sub> heterostructures , emphasizing their potential in advanced nanodevices such as photodetectors, flexible electronics, and energy storage systems.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"251 \",\"pages\":\"Article 113727\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025625000709\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000709","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近在二维(2D)过渡金属碳化物、碳氮化物和氮化物(称为MXenes)方面取得的进展,已经显示出卓越的结构、电子和光学特性,使它们成为储能、电磁干扰屏蔽和光电子学的有希望的候选者。在本研究中,系统研究了三种稳定堆叠构型:SSC-AA、SSC-AB和SSC-AC的GaN/Zr2CO2 2D/2D异质结构的结构、电子和光学性质。计算使用密度泛函理论(DFT)在广义梯度近似(GGA)中进行,并辅以Hubbard U校正(GGA+U),以准确捕获电子相关效应。SSC-AA、SSC-AB和SSC-AC的带隙分别为0.99 eV、1.34 eV和1.51 eV,负形成能分别为- 88.98 meV/Å 2、- 80.09 meV/Å 2和- 92.24 meV/Å 2,证实了异质结构的稳定性。此外,Bader电荷分析表明层间电荷转移显著,在SSC-AC中最稳定的构型为Ga提供+1.39e, N接收−1.37e。在2.8 eV附近观察到SSC-AC的光吸收峰,表明其适合于可见光范围的光电应用。电子定位函数(ELF)进一步强调了Zr-C和Ga-N轨道杂化促进的强共价键和有效的电荷转移。这些结果为GaN/Zr2CO2异质结构的可调谐电子和光学特性提供了详细的见解,强调了它们在光电探测器、柔性电子和储能系统等先进纳米器件中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating band gap and optical activity in GaN/Zr2CO2 Heterostructure via stacking strategies for promising optoelectronic applications

Modulating band gap and optical activity in GaN/Zr2CO2 Heterostructure via stacking strategies for promising optoelectronic applications
ecent advances in two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides, known as MXenes, have demonstrated exceptional structural, electronic, and optical properties, making them promising candidates for energy storage, electromagnetic interference shielding, and optoelectronics. In this study, the structural, electronic, and optical properties of the GaN/Zr2CO2 2D/2D heterostructure are systematically investigated across three stable stacking configurations: SSC-AA, SSC-AB, and SSC-AC. The calculations are performed using density functional theory (DFT) within the generalized gradient approximation (GGA) augmented by a Hubbard U correction (GGA+U) to accurately capture electron correlation effects. Band gaps of 0.99 eV, 1.34 eV, and 1.51 eV are obtained for SSC-AA, SSC-AB, and SSC-AC, respectively, while the negative formation energies of 88.98 meV/Å 2, 80.09 meV/Å 2, and 92.24 meV/Å 2 confirm the stability of the heterostructures. Additionaly, Bader charge analysis indicates significant interlayer charge transfer, with Ga donating +1.39e and N receiving 1.37e in SSC-AC, the most stable configuration. Optical absorption peaks are observed near 2.8 eV for SSC-AC, suggesting its suitability for visible-range optoelectronic applications. The electron localization function (ELF) further highlights strong covalent bonding and efficient charge transfer facilitated by Zr–C and Ga–N orbital hybridization. These results provide detailed insights into the tunable electronic and optical properties of GaN/Zr2CO2 heterostructures , emphasizing their potential in advanced nanodevices such as photodetectors, flexible electronics, and energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信