CMAQ化学输运模型中气相化学求解器的GPU实现

Duncan Quevedo, Khanh Do, George Delic, José Rodríguez-Borbón, Bryan M. Wong and Cesunica E. Ivey*, 
{"title":"CMAQ化学输运模型中气相化学求解器的GPU实现","authors":"Duncan Quevedo,&nbsp;Khanh Do,&nbsp;George Delic,&nbsp;José Rodríguez-Borbón,&nbsp;Bryan M. Wong and Cesunica E. Ivey*,&nbsp;","doi":"10.1021/acsestair.4c0018110.1021/acsestair.4c00181","DOIUrl":null,"url":null,"abstract":"<p >The Community Multiscale Air Quality (CMAQ) model simulates atmospheric phenomena, including advection, diffusion, gas-phase chemistry, aerosol physics and chemistry, and cloud processes. Gas-phase chemistry is often a major computational bottleneck due to its representation as large systems of coupled nonlinear stiff differential equations. We leverage the parallel computational performance of graphics processing unit (GPU) hardware to accelerate the numerical integration of these systems in CMAQ’s CHEM module. Our implementation, dubbed CMAQ-CUDA, in reference to its use in the Compute Unified Device Architecture (CUDA) general purpose GPU (GPGPU) computing solution, migrates CMAQ’s Rosenbrock solver from Fortran to CUDA Fortran. CMAQ-CUDA accelerates the Rosenbrock solver such that simulations using the chemical mechanisms RACM2, CB6R5, and SAPRC07 require only 51%, 50%, or 35% as much time, respectively, as CMAQv5.4 to complete a chemistry time step. Our results demonstrate that CMAQ is amenable to GPU acceleration and highlight a novel Rosenbrock solver implementation for reducing the computational burden imposed by the CHEM module.</p><p >We accelerate CMAQ’s gas-phase chemistry module using GPUs, saving compute resources during intensive simulations.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 2","pages":"226–235 226–235"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00181","citationCount":"0","resultStr":"{\"title\":\"GPU Implementation of a Gas-Phase Chemistry Solver in the CMAQ Chemical Transport Model\",\"authors\":\"Duncan Quevedo,&nbsp;Khanh Do,&nbsp;George Delic,&nbsp;José Rodríguez-Borbón,&nbsp;Bryan M. Wong and Cesunica E. Ivey*,&nbsp;\",\"doi\":\"10.1021/acsestair.4c0018110.1021/acsestair.4c00181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Community Multiscale Air Quality (CMAQ) model simulates atmospheric phenomena, including advection, diffusion, gas-phase chemistry, aerosol physics and chemistry, and cloud processes. Gas-phase chemistry is often a major computational bottleneck due to its representation as large systems of coupled nonlinear stiff differential equations. We leverage the parallel computational performance of graphics processing unit (GPU) hardware to accelerate the numerical integration of these systems in CMAQ’s CHEM module. Our implementation, dubbed CMAQ-CUDA, in reference to its use in the Compute Unified Device Architecture (CUDA) general purpose GPU (GPGPU) computing solution, migrates CMAQ’s Rosenbrock solver from Fortran to CUDA Fortran. CMAQ-CUDA accelerates the Rosenbrock solver such that simulations using the chemical mechanisms RACM2, CB6R5, and SAPRC07 require only 51%, 50%, or 35% as much time, respectively, as CMAQv5.4 to complete a chemistry time step. Our results demonstrate that CMAQ is amenable to GPU acceleration and highlight a novel Rosenbrock solver implementation for reducing the computational burden imposed by the CHEM module.</p><p >We accelerate CMAQ’s gas-phase chemistry module using GPUs, saving compute resources during intensive simulations.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 2\",\"pages\":\"226–235 226–235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00181\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社区多尺度空气质量(CMAQ)模式模拟大气现象,包括平流、扩散、气相化学、气溶胶物理和化学以及云过程。气相化学通常是一个主要的计算瓶颈,因为它的表示是耦合的非线性刚性微分方程的大系统。我们利用图形处理单元(GPU)硬件的并行计算性能来加速这些系统在CMAQ的CHEM模块中的数值集成。我们的实现,被称为CMAQ-CUDA,参考它在计算统一设备架构(CUDA)通用GPU (GPGPU)计算解决方案中的使用,将CMAQ的Rosenbrock求解器从Fortran迁移到CUDA Fortran。CMAQ-CUDA加速了Rosenbrock求解器,使得使用化学机制RACM2、CB6R5和SAPRC07的模拟完成一个化学时间步骤所需的时间分别为CMAQv5.4的51%、50%或35%。我们的研究结果表明,CMAQ适用于GPU加速,并突出了一种新的Rosenbrock求解器实现,用于减少CHEM模块带来的计算负担。我们使用gpu加速CMAQ的气相化学模块,在密集的模拟过程中节省计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Implementation of a Gas-Phase Chemistry Solver in the CMAQ Chemical Transport Model

The Community Multiscale Air Quality (CMAQ) model simulates atmospheric phenomena, including advection, diffusion, gas-phase chemistry, aerosol physics and chemistry, and cloud processes. Gas-phase chemistry is often a major computational bottleneck due to its representation as large systems of coupled nonlinear stiff differential equations. We leverage the parallel computational performance of graphics processing unit (GPU) hardware to accelerate the numerical integration of these systems in CMAQ’s CHEM module. Our implementation, dubbed CMAQ-CUDA, in reference to its use in the Compute Unified Device Architecture (CUDA) general purpose GPU (GPGPU) computing solution, migrates CMAQ’s Rosenbrock solver from Fortran to CUDA Fortran. CMAQ-CUDA accelerates the Rosenbrock solver such that simulations using the chemical mechanisms RACM2, CB6R5, and SAPRC07 require only 51%, 50%, or 35% as much time, respectively, as CMAQv5.4 to complete a chemistry time step. Our results demonstrate that CMAQ is amenable to GPU acceleration and highlight a novel Rosenbrock solver implementation for reducing the computational burden imposed by the CHEM module.

We accelerate CMAQ’s gas-phase chemistry module using GPUs, saving compute resources during intensive simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信