{"title":"关于斯皮尔伯格-邓猜想","authors":"Ashwin Sah, Julian Sahasrabudhe, Mehtaab Sawhney","doi":"10.1007/s00039-025-00707-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>M</i> be an <i>n</i>×<i>n</i> matrix with iid subgaussian entries with mean 0 and variance 1 and let <i>σ</i><sub><i>n</i></sub>(<i>M</i>) denote the least singular value of <i>M</i>. We prove that </p><span>$$ \\mathbb{P}\\big( \\sigma _{n}(M) \\leqslant \\varepsilon n^{-1/2} \\big) = (1+o(1)) \\varepsilon + e^{- \\Omega (n)} $$</span><p> for all 0⩽<i>ε</i>≪1. This resolves, up to a 1+<i>o</i>(1) factor, a seminal conjecture of Spielman and Teng.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"62 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Spielman-Teng Conjecture\",\"authors\":\"Ashwin Sah, Julian Sahasrabudhe, Mehtaab Sawhney\",\"doi\":\"10.1007/s00039-025-00707-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>M</i> be an <i>n</i>×<i>n</i> matrix with iid subgaussian entries with mean 0 and variance 1 and let <i>σ</i><sub><i>n</i></sub>(<i>M</i>) denote the least singular value of <i>M</i>. We prove that </p><span>$$ \\\\mathbb{P}\\\\big( \\\\sigma _{n}(M) \\\\leqslant \\\\varepsilon n^{-1/2} \\\\big) = (1+o(1)) \\\\varepsilon + e^{- \\\\Omega (n)} $$</span><p> for all 0⩽<i>ε</i>≪1. This resolves, up to a 1+<i>o</i>(1) factor, a seminal conjecture of Spielman and Teng.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00707-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00707-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.