STING直接与PAR相互作用,促进急性电离辐射介导的DNA损伤后的细胞凋亡

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yirong Sun, Saba R. Aliyari, Kislay Parvatiyar, Lulan Wang, Anjie Zhen, Wei Sun, Xiaobo Han, Adele Zhang, Ethan Kato, Helen Shi, Elena De Schutter, William H. McBride, Samuel W. French, Genhong Cheng
{"title":"STING直接与PAR相互作用,促进急性电离辐射介导的DNA损伤后的细胞凋亡","authors":"Yirong Sun, Saba R. Aliyari, Kislay Parvatiyar, Lulan Wang, Anjie Zhen, Wei Sun, Xiaobo Han, Adele Zhang, Ethan Kato, Helen Shi, Elena De Schutter, William H. McBride, Samuel W. French, Genhong Cheng","doi":"10.1038/s41418-025-01457-z","DOIUrl":null,"url":null,"abstract":"<p>Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in <i>Sting</i><sup><i>gt-/gt-</i></sup> cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in <i>Sting</i><sup><i>gt-/gt-</i></sup> mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms.</p><figure><p>STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.</p></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"7 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage\",\"authors\":\"Yirong Sun, Saba R. Aliyari, Kislay Parvatiyar, Lulan Wang, Anjie Zhen, Wei Sun, Xiaobo Han, Adele Zhang, Ethan Kato, Helen Shi, Elena De Schutter, William H. McBride, Samuel W. French, Genhong Cheng\",\"doi\":\"10.1038/s41418-025-01457-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in <i>Sting</i><sup><i>gt-/gt-</i></sup> cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in <i>Sting</i><sup><i>gt-/gt-</i></sup> mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms.</p><figure><p>STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.</p></figure>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01457-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01457-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性电离辐射(IR)引起严重的DNA损伤,导致细胞周期阻滞、细胞死亡和先天免疫系统激活。干扰素基因刺激因子(STING)在ir诱导的组织损伤和细胞死亡中的作用和信号通路尚不清楚。本研究表明,STING在体外和体内对急性IR引起的DNA损伤的反应中促进细胞凋亡至关重要。STING与激活的聚(adp -核糖)聚合酶-1 (PARP1)在IR时产生的聚(adp -核糖)(PAR)结合。与WT细胞相比,Stinggt-/gt-细胞的凋亡受到抑制。DNA损伤导致PARP1产生过多的PAR,可增强STING磷酸化,抑制PARP1可减少IR后的细胞凋亡。在体内,sting -/gt-小鼠或使用低剂量PARP1抑制剂PJ34时,ir诱导的隐窝细胞死亡显著降低,导致对腹部照射的大量抵抗。STING缺失或PARP1功能抑制可降低促凋亡基因PUMA的表达,降低Bax在线粒体膜上的定位,从而减少细胞凋亡。我们的研究结果强调了STING和PAR在ir介导的细胞凋亡诱导中的重要作用,这可能对控制辐射诱导的细胞凋亡或急性辐射症状具有治疗意义。STING通过直接结合活化的聚(adp -核糖)聚合酶-1 (PARP1)产生的聚(adp -核糖)(PAR)响应急性电离辐射介导的DNA损伤,主要通过Puma-Bax相互作用诱导细胞凋亡。STING缺乏或PAR产生减少保护小鼠免受急性辐射综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage

STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage

Acute ionizing radiation (IR) causes severe DNA damage, leading to cell cycle arrest, cell death, and activation of the innate immune system. The role and signaling pathway of stimulator of interferon genes (STING) in IR-induced tissue damage and cell death are not well understood. This study revealed that STING is crucial for promoting apoptosis in response to DNA damage caused by acute IR both in vitro and in vivo. STING binds to poly (ADP‒ribose) (PAR) produced by activated poly (ADP‒ribose) polymerase-1 (PARP1) upon IR. Compared with that in WT cells, apoptosis was suppressed in Stinggt-/gt- cells. Excessive PAR production by PARP1 due to DNA damage enhances STING phosphorylation, and inhibiting PARP1 reduces cell apoptosis after IR. In vivo, IR-induced crypt cell death was significantly lower in Stinggt-/gt- mice or with low-dose PARP1 inhibitor, PJ34, resulting in substantial resistance to abdominal irradiation. STING deficiency or inhibition of PARP1 function can reduce the expression of the proapoptotic gene PUMA, decrease the localization of Bax on the mitochondrial membrane, and thus reduce cell apoptosis. Our findings highlight crucial roles for STING and PAR in the IR-mediated induction of apoptosis, which may have therapeutic implications for controlling radiation-induced apoptosis or acute radiation symptoms.

STING responds to acute ionizing radiation-mediated DNA damage by directly binding to poly (ADP-ribose) (PAR) produced by activated poly (ADP-ribose) polymerase-1 (PARP1), and mainly induces cell apoptosis through Puma-Bax interaction. STING deficiency or reduced production of PAR protected mice against Acute Radiation Syndrome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信